Advertisement

Invertebrates

  • Ian D. HoggEmail author
  • Mark I. Stevens
  • Diana H. Wall
Chapter

Abstract

Terrestrial invertebrates are the largest permanent residents for much of the Antarctic continent with body lengths < 2 mm for most. The fauna consists of the arthropod taxa Collembola (springtails) and Acari (mites) as well as the microinvertebrates Nematoda, Tardigrada and Rotifera. Diversity in continental Antarctica is lower compared with warmer regions such as the Antarctic Peninsula and the subantarctic islands and several taxa such as the arthropods have considerably restricted distributions. The highest diversity of invertebrates is found along the Transantarctic Mountains of the Ross Sea Region and taxa are likely to be relicts from a warmer past that have survived in glacial refugia. Dispersal among the extremely fragmented Antarctic landscape is likely to be limited to transport via fresh- or salt-waters, particularly for the arthropod taxa, although long-distance wind dispersal is also possible for the microinvertebrates. Invertebrates possess several adaptations to low moisture levels and extreme cold temperatures in Antarctica. For example, nematodes and tardigrades avoid extreme dry and cold temperatures by entering a desiccation-resistant anhydrobiotic state. In contrast, arthropods do not have such a resistant state and freezing is lethal. Adaptations for the arthropod taxa include freeze avoidance and the production of intracellular, antifreeze proteins. Climate changes in Antarctica are likely to pose significant challenges for the invertebrate fauna. Changes in temperature, soil moisture and associated shifts in taxon distributions as well as the potential for non-indigenous species introductions are all likely to have considerable impacts on the Antarctic fauna. From a conservation perspective, there is a pressing need for terrestrial observation networks to record the present state of Antarctic terrestrial ecosystems as well as to monitor impending changes. Biosecurity measures which minimize species introductions or transfers of organisms within Antarctica will be essential.

Keywords

Cold Tolerance Antarctic Peninsula Antarctic Continent Terrestrial Invertebrate Soil Habitat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adams BJ, Wall DH, Gozel U, Dillman AR, Chaston JM, Hogg ID (2007) The southernmost worm, Scottnema lindsayae (Nematoda): diversity, dispersal and ecological stability. Polar Biol 30:809–815CrossRefGoogle Scholar
  2. Adams BJ, Bardgett RD, Ayres E, Wall DH, Aislabie J, Bamforth S, Bargagli R, Cary C, Cavacini P, Connell L, Convey P, Fell JW, Frati F, Hogg I, Newsham K, O’Donnell A, Russell N, Seppelt R, Stevens MI (2006) Diversity and distribution of Victoria Land biota. Soil Biol Biochem 38:3003–3018CrossRefGoogle Scholar
  3. Addo-Bediako A, Chown SL, Gaston KJ (2000) Thermal tolerance, climatic variability and latitude. Proc R Soc London B267:739–745CrossRefGoogle Scholar
  4. Adhikari BN, Wall DH, Adams BJ (2010) Effect of slow desiccation and freezing on gene transcription and stress survival of an Antarctic nematode. J Exp Biol 213:1803–1812Google Scholar
  5. Andrássy I (1998) Nematodes in the sixth continent. J Nematode Morphol Syst 1:107–186Google Scholar
  6. Andrássy I (2008) Eudorylaimus species (Nematoda: Dorylaimida) of continental Antarctica. J Nematode Morphol Syst 11:49–66Google Scholar
  7. Andrássy I, Gibson JAE (2007) Nematodes from saline and freshwater lakes of the Vestfold Hills, East Antarctica, including the description of Hypodontolaimus antarcticus sp. Polar Biol 30:669–678CrossRefGoogle Scholar
  8. Ashworth AC, Cantrill DJ (2004) Neogene vegetation of the Meyer Desert formation (Sirius Group) Transantarctic Mountains, Antarctica. Palaeogeogr Palaeoclimatol Palaeoecol 213:65–82CrossRefGoogle Scholar
  9. Bale JS (2002) Insects and low temperatures: from molecular biology to distributions and abundance. Philos Trans R Soc Lond B Biol Sci 357:849–861CrossRefGoogle Scholar
  10. Block W (1984) Terrestrial microbiology, invertebrates and ecosystems. Antarct Ecol 1:163–236Google Scholar
  11. Block W (1985) Ecological and physiological studies of terrestrial arthropods in the Ross Dependency 1984–1985. British Antarct Surv Bull 68:115–122Google Scholar
  12. Block W (1990) Cold tolerance of insects and other arthropods. Philos Trans R Soc London 326B:613–633CrossRefGoogle Scholar
  13. Block W, Tilbrook PJ (1975) Respiration studies on the Antarctic collembolan Cryptopygus antarcticus. Oikos 26:15–25CrossRefGoogle Scholar
  14. Block W, Tilbrook PJ (1978) Oxygen uptake by Cryptopygus antarcticus (Collembola) at South Georgia. Oikos 30:61–67CrossRefGoogle Scholar
  15. Block W, Lewis Smith RI, Kennedy AD (2009) Strategies of survival and resource exploitation in the Antarctic fellfield ecosystem. Biol Rev 84:449–484PubMedCrossRefGoogle Scholar
  16. Bunt JS (1954) The soil inhabiting nematodes of Macquarie Island. Aust J Zool 2:264–274CrossRefGoogle Scholar
  17. Brundin L (1970) Antarctic land faunas and their history. Antarct Ecol 1:41–53Google Scholar
  18. Cannon RJC, Block W (1988) Cold tolerance of microarthropods. Biol Rev 63:23–77CrossRefGoogle Scholar
  19. Carpenter G (1902) Aptera: Collembola, Insecta, chap 9. The report on the collections of natural history made in the Antarctic regions during the voyage of the Southern Cross. British Museum (Natural History), London, pp 221–223Google Scholar
  20. Carpenter GH (1908) Insecta Aptera: National Antarctic Expedition 1901–1904. Nat Hist IV Zool, p 5Google Scholar
  21. Caruso T, Hogg ID, Carapelli A, Frati F, Bargagli R (2009) Large-scale spatial patterns in the distribution of Collembola (Hexapoda) species in Antarctic terrestrial ecosystems. J Biogeogr 36:879–886CrossRefGoogle Scholar
  22. Chown SL, Convey P (2007) Spatial and temporal variability across life’s hierarchies in the terrestrial Antarctic. Trans R Soc Lond B Biol Sci 362:2307–2331CrossRefGoogle Scholar
  23. Chown SL, Huiskes AH, Gremmen NJ, Lee JE, Terauds A, Crosbie K, Frenot Y, Hughes KA, Imura S, Kiefer K, Lebouvier M, Raymond B, Tsujimotoi M, Ware C, Van de Vijver B, Bergstrom DM (2012) Continent-wide risk assessment for the establishment of nonindigenous species in Antarctica. Proc Natl Acad Sci 109:4938–4943PubMedCentralPubMedCrossRefGoogle Scholar
  24. Coleman DC, Elliott ET, Blair JM, Wall DW (1999) Soil Invertebrates. In: Robertson GP, Coleman DC, Bledsoe CS, Phillips S (eds) Standard Soil Methods for Long-Term Ecological Research. Oxford University Press, New York, pp 349–377Google Scholar
  25. Convey P (1996) Overwintering strategies of terrestrial invertebrates in Antarctica-the significance of flexibility in extremely seasonal environments. Eur J Entomol 93:489–506Google Scholar
  26. Convey P (1997) How are the life history strategies of Antarctic terrestrial invertebrates influenced by extreme environmental conditions? J Ther Biol 22:429–440CrossRefGoogle Scholar
  27. Convey P, Stevens MI (2007) Antarctic biodiversity. Science 317:1877–1878PubMedCrossRefGoogle Scholar
  28. Convey P, Gibson JAE, Hillenbrand CD, Hodgson DA, Pugh PJA, Smellie JL, Stevens MI (2008) Antarctic terrestrial life—challenging the history of the frozen continent? Biol Rev 83:103–117PubMedCrossRefGoogle Scholar
  29. Convey P, Stevens MI, Hodgson DA, Hillenbrand CD, Clarke A, Pugh PJA, Smellie JL, Cary SC (2009) Antarctic terrestrial life—ancient evolutionary persistence or recent colonisation? Q Sci Rev 28:3035–3048CrossRefGoogle Scholar
  30. Convey P, McInnes SJ (2005) Exceptional, tardigrade dominated ecosystems in Ellsworth Land, Antarctica. Ecol 86:519–527CrossRefGoogle Scholar
  31. Courtright EM, Wall DH, Virginia RA (2001) Determining habitat suitability for soil invertebrates in an extreme environment: the McMurdo Dry Valleys, Antarctica. Antarct Sci 13:9–17CrossRefGoogle Scholar
  32. Czechowski P, Sands CJ, Adams BJ, D’Haese CA, Gibson JAE, Stevens MI (2012) Antarctic Tardigrada: a first step in understanding MOTUs and biogeography of cryptic meiofauna. Invertebr Syst 26:526–538CrossRefGoogle Scholar
  33. Dartnall HJG (1983) Rotifers of the Antarctic and sub-Antarctic. Hydrobiologia 104:57–60CrossRefGoogle Scholar
  34. Dastych H (1984) The Tardigrada from the Antarctic with descriptions of several new species. Acta Zool Cracoviensia 27:377–436Google Scholar
  35. Davidson MM, Broady PA (1996) Analysis of gut contents of Gomphiocephalus hodgsoni Carpenter (Collembola: Hypogastruridae) at Cape Geology, Antarctica. Polar Biol 16:463–467CrossRefGoogle Scholar
  36. Demetras NJ, Hogg ID, Banks JC, Adams BJ (2010) Latitudinal distribution and mitochondrial DNA (COI) variability of Stereotydeus spp. (Acari: Prostigmata) in Victoria Land and the central Transantarctic Mountains. Antarct Sci 22:749–756CrossRefGoogle Scholar
  37. Fitzsimons JM (1971a) On the food habits of certain Antarctic arthropods from coastal Victoria Land and adjacent islands. Pacific Insect Monogr 25:121–125Google Scholar
  38. Fitzsimons JM (1971b) Temperature and three species of Antarctic arthropods. Pac Insect Monogr 25:127–135Google Scholar
  39. Gressitt JL, Leech RE, Wise KAJ (1963) Entomological investigations in Antarctica. Pac Insect 5:287–304Google Scholar
  40. Gressitt JL, Fearon CE, Rennell K (1964) Antarctic mite populations and negative arthropod surveys. Pac Insect 6:531–540Google Scholar
  41. Gressitt JL, Shoup J (1967) Ecological notes on free-living mites in North Victoria Land. Antarct Res Ser 10:307–320Google Scholar
  42. Hawes TC, Worland MR, Bale JS, Convey P (2008) Rafting in Antarctic Collembola. J Zool 274:44–50Google Scholar
  43. Hawes TC (2011) Rafting in the Antarctic springtail, Gomphiocephalus hodgsoni. Antarct Sci 23:456–460Google Scholar
  44. Hawes TC, Torricelli G, Stevens MI (2010) Haplotype diversity in the Antarctic springtail Gressittacantha terranova at fine spatial scales-a Holocene twist to a Pliocene tale. Antarct Sci 22:766CrossRefGoogle Scholar
  45. Hogg ID, Stevens MI (2002) Soil fauna of Antarctic coastal landscapes. Geoecol Antarct Ice-Free Coast Landscape: Ecol Stud Anal Synth 154:265–280CrossRefGoogle Scholar
  46. Hogg ID, Craig Cary S, Convey P, Newsham KK, O’Donnell AG, Adams BJ, Aislabie J, Frati F, Stevens MI, Wall DH (2006) Biotic interactions in Antarctic terrestrial ecosystems: are they a factor? Soil Biol Biochem 38:3035–3040CrossRefGoogle Scholar
  47. Hogg ID, Wall DH (2011) Global change and Antarctic terrestrial biodiversity. Polar Biol 34:1625–1627CrossRefGoogle Scholar
  48. Hogg ID, Wall DH (2012) Extreme habitats: polar deserts. In Bell EM (ed) Life at extremes: environments, organisms and strategies for survival. Cambridge International, Cambridge, UK, pp 176–195Google Scholar
  49. Hopkin SP (1997) Biol Springtails: (Insecta: Collembola). Oxford University Press, Oxford, p 340Google Scholar
  50. Janetschek H (1963) On the terrestrial fauna of the Ross Sea area, Antarctica. Pac Insect 5:305–311Google Scholar
  51. Janetschek H (1967a) Arthropod ecology of south Victoria Land. Antarct Res Ser 10:205–293Google Scholar
  52. Janetschek H (1967b) Growth and maturity of the springtail, Gomphiocephalus hodgsoni Carpenter, from South Victoria Land and Ross Island. Antarct Res Ser 10:295–305Google Scholar
  53. Jennings PG (1976) Tardigrada from the Antarctic Peninsula and Scotia Ridge Region. British Antarct Surv Bull 44:77–95Google Scholar
  54. Leasi F, Pennati R, Ricci C (2009) First description of the serotonergic nervous system in a bdelloid rotifer: Macrotrachela quadricornifera Milne 1886 (Philodinidae). Zool Anz 248:47–55Google Scholar
  55. McGaughran A, Torricelli G, Carapelli A, Frati F, Stevens MI, Convey P, Hogg ID (2009) Contrasting phylogeographical patterns for springtails reflect different evolutionary histories between the Antarctic Peninsula and continental Antarctica. J Biogeogr 37:103–119CrossRefGoogle Scholar
  56. McGaughran A, Convey P, Redding GP, Stevens MI (2010) Temporal and spatial metabolic rate variation in the Antarctic springtail Gomphiocephalus hodgsoni. J Insect Physiol 56:57–64PubMedCrossRefGoogle Scholar
  57. McGaughran A, Stevens MI, Hogg ID, Carapelli A (2011) Extreme glacial legacies: a synthesis of the Antarctic springtail phylogeographic record. Insect 2:62–82CrossRefGoogle Scholar
  58. McInnes SJ (2010) Echiniscus corrugicaudatus (Heterotardigrada; Echiniscidae) a new species from Ellsworth Land, Antarctica. Polar Biol 33:59–70CrossRefGoogle Scholar
  59. Magalhães C, Stevens MI, Cary SC, Ball BA, Storey BC, Wall DH, Türk R, Ruprecht U (2012) At the limits of life: multidisciplinary insights reveals environmental constraints on biotic diversity in continental Antarctica. PLoS ONE 7(9):e44578PubMedCentralPubMedCrossRefGoogle Scholar
  60. Miller JD, Horne P, Heatwole H, Miller WR, Bridges L (1988) A survey of the terrestrial Tardigrada of the Vestfold Hills, Antarctica. Hydrobiologia 165:197–208CrossRefGoogle Scholar
  61. Mouratov S, Lahav I, Barness G, Steinberger Y (2001) Preliminary study of the soil nematode community at Machu Picchu Station, King George Island, Antarctica. Polar Biol 24:545–548CrossRefGoogle Scholar
  62. Nielsen UN, Wall DH, Adams BJ, Virginia RA, Ball BA, Gooseff MN, McKnight DM (2012) The ecology of pulse events: insights from an extreme climatic event in a polar desert ecosystem. Ecosphere 3:17CrossRefGoogle Scholar
  63. Nielsen UN, Wall DH, Adams BJ, Virginia RA (2011) Antarctic nematode communities: observed and predicted responses to climate change. Polar Biol 34:1701–1711CrossRefGoogle Scholar
  64. Nkem J, Virginia R, Barrett J, Wall D, Li G (2006a) Salt tolerance and survival thresholds for two species of Antarctic soil nematodes. Polar Biol 29:643–651CrossRefGoogle Scholar
  65. Nkem J, Wall D, Virginia R, Barrett J, Broos E, Porazinska D, Adams B (2006b) Wind dispersal of soil invertebrates in the McMurdo Dry valleys, Antarctica. Polar Biol 29:346–352CrossRefGoogle Scholar
  66. Ohyama Y, Hiruta SI (1995) The terrestrial arthropods of Sør Rondane in eastern Dronning Maud Land, Antarctica, with biogeographical notes. Polar Biol 15:341–347CrossRefGoogle Scholar
  67. Peterson AJ (1971) Population studies on the Antarctic Collembolan Gomphiocephalus hodgsoni Carpenter. Pacific Insect Monogr 25:75–98Google Scholar
  68. Porazinska DL, Wall DH, Virginia RA (2002) Invertebrates in ornithogenic soils on Ross Island, Antarctica. Polar Biol 25:569–574Google Scholar
  69. Pryor ME (1962) Some environmental features of Hallett Station, Antarctica, with special reference to soil arthropods. Pac Insect 4:681–728Google Scholar
  70. Ricci C, Melone G, Santo N, Caprioli M (2003) Morphological response of a bdelloid rotifer to desiccation. J Morphol 257:246–253Google Scholar
  71. Shishida Y, Ohyama Y (1986) A note on the terrestrial nematodes around Syowa Station, Antarctica. Mem Natl Inst Polar Res Spec Issue 44:259–260Google Scholar
  72. Shishida Y, Ohyama Y (1989) A note on the terrestrial nematodes around Palmer Station, Antarctica. Proc NIPR Symp Polar Biol 2:223–224Google Scholar
  73. Simmons BL, Wall DH, Adams BJ, Ayres E, Barrett JE, Virginia RA (2009) Terrestrial mesofauna in above- and below-ground habitats: Taylor Valley, Antarctica. Polar Biol 32:1549–1558CrossRefGoogle Scholar
  74. Sinclair BJ (1999) Insect cold tolerance: how many kinds of frozen? Eur J Entomol 96:157–164Google Scholar
  75. Sinclair BJ (2001) On the distribution of terrestrial invertebrates at Cape Bird, Ross Island, Antarctica. Polar Biol 24:394–400CrossRefGoogle Scholar
  76. Sinclair BJ, Sjursen H (2001a) Cold tolerance of the Antarctic springtail Gomphiocephalus hodgsoni (Collembola, Hypogastruridae). Antarct Sci 13:271–279CrossRefGoogle Scholar
  77. Sinclair BJ, Sjursen H (2001b) Terrestrial invertebrate abundance across a habitat transect in Keble Valley, Ross Island, Antarctica. Pedobiologia 45:134–145CrossRefGoogle Scholar
  78. Sinclair BJ, Stevens MI (2006) Terrestrial microarthropods of Victoria Land and Queen Maud Mountains, Antarctica: implications of climate change. Soil Biol Biochem 38:3158–3170CrossRefGoogle Scholar
  79. Sinclair BJ, Vernon P, Klok CJ, Chown SL (2003a) Insects at low temperatures: an ecological perspective. Trends Ecol Evol 18:257–262CrossRefGoogle Scholar
  80. Sinclair BJ, Klok CJ, Scott MB, Terblanche JS, Chown SL (2003b) Diurnal variation in supercooling points of three species of Collembola from Cape Hallett, Antarctica. J Insect Physiol 49:1049–1061PubMedCrossRefGoogle Scholar
  81. Sjursen H, Sinclair BJ (2002) On the cold hardiness of Stereotydeus mollis (Acari: Prostigmata) from Ross Island, Antarctica. Pedobiologia 46:188–195CrossRefGoogle Scholar
  82. Sohlenius B, Boström S (2009) Distribution and population structure of two bacterial feeding nematodes in ice-free areas in East Antarctica. Nematol 11:189–201CrossRefGoogle Scholar
  83. Sohlenius B, Bostrom S, Hirschfelder A (1995) Nematodes, rotifers and tardigrades from nunataks in Dronning Maud Land, East Antarctica. Polar Biol 15:51–56CrossRefGoogle Scholar
  84. Sømme L (1978) Cold-hardiness of Cryptopygus antarcticus (Collembola) from Bouvetøya. Oikos 31:94–97CrossRefGoogle Scholar
  85. Sømme L, Block W (1982) Cold hardiness of Collembolan at Signy Island, Maritime, Antarctica. Oikos 38:168–176CrossRefGoogle Scholar
  86. Sømme L (1986) Ecology of Cryptopygus sverdrupi (Insecta: Collembola) from Dronning Maud Land, Antarctica. Polar Biol 6:179–184CrossRefGoogle Scholar
  87. Sømme L (1999) The physiology of cold hardiness in terrestrial arthropods. Eur J Entomol 96:1–10Google Scholar
  88. Stevens MI, Hogg ID (2003) Long-term isolation and recent range expansion from glacial refugia revealed for the endemic springtail Gomphiocephalus hodgsoni from Victoria Land, Antarctica. Mol Ecol 12:2357–2369PubMedCrossRefGoogle Scholar
  89. Stevens MI, Greenslade P, Hogg ID, Sunnucks P (2006) Southern hemisphere springtails: could any have survived glaciation of Antarctica? Mol Biol Evol 23:874–882PubMedCrossRefGoogle Scholar
  90. Stevens MI, Hogg ID (2002) Expanded distributional records of Collembola and Acari in southern Victoria Land, Antarctica. Pedobiologia 46:485–495CrossRefGoogle Scholar
  91. Stevens MI, Hogg ID (2006) Contrasting levels of mitochondrial DNA variability between mites (Penthalodidae) and springtails (Hypogastruridae) from the Trans-Antarctic Mountains suggest long-term effects of glaciation and life history on substitution rates, and speciation processes. Soil Biol Biochem 38:3171–3180CrossRefGoogle Scholar
  92. Stevens MI, Frati F, McGaughran A, Spinsanti G, Hogg ID (2007) Phylogeographic structure suggests multiple glacial refugia in northern Victoria Land for the endemic Antarctic springtail Desoria klovstadi (Collembola, Isotomidae). Zool Scr 36:201–212CrossRefGoogle Scholar
  93. Stevens MI, Porco D, D’Haese CA, Deharveng L (2011) Comment on “Taxonomy and the DNA barcoding enterprise” by Ebach (2011). Zootaxa 2838:85–88Google Scholar
  94. Strandtmann RW (1967) Terrestrial Prostigmata (trombidiform mites). Antarct Res Ser 10:51–95Google Scholar
  95. Timm RW (1971) Antarctic soil and freshwater nematodes from the Mc Murdo Sound Region. Proc Helminthol Soc Wash 38:42–52Google Scholar
  96. Torricelli G, Frati F, Convey P, Telford M, Carapelli A (2010) Population structure of Friesea grisea (Collembola, Neanuridae) in the Antarctic Peninsula and Victoria Land: evidence for local genetic differentiation of pre-Pleistocene origin. Antarct Sci 22:757–765CrossRefGoogle Scholar
  97. Voituron Y, Mouquet N, de Mazancourt C, Clobert J (2002) To freeze or not to freeze? An evolutionary perspective on the cold-hardiness strategies of overwintering ectotherms. Am Nat 160:255–270PubMedCrossRefGoogle Scholar
  98. Wall DH, Virginia RA (1999) Controls on soil biodiversity: lessons from extreme environments. Appl Soil Ecol 13:127–150CrossRefGoogle Scholar
  99. Wall DH (2005) Biodiversity and ecosystem functioning in terrestrial habitats of Antarctica. Antarct Sci 17:523–531CrossRefGoogle Scholar
  100. Wall DH (2007) Global change tipping points: above- and below-ground biotic interactions in a low diversity ecosystem. Philos Trans R Soc B: Biol Sci 362:2291–2306CrossRefGoogle Scholar
  101. Wall DH (2012) Global change in a low diversity terrestrial ecosystem: the McMurdo Dry Valleys. In: Rogers AD, Johnston NM, Murphy EJ, Clarke A (eds) Antarctic ecosystems: an extreme environment in a changing world. Wiley-Blackwell, West Sussex, UK, pp 44–63Google Scholar
  102. Wallwork JA (1973) Zoogeography of some terrestrial micro-Arthropoda in Antarctica. Biol Rev 48:233–259CrossRefGoogle Scholar
  103. Wharton DA, Brown IM (1989) A survey of terrestrial nematodes from the McMurdo Sound region, Antarctica. NZ J Zool 16:467–470CrossRefGoogle Scholar
  104. Wharton DA (2003) The environmental physiology of Antarctic terrestrial nematodes: a review. J Comp Physiol B: Biochem Syst Environ Physiol 173:621–628CrossRefGoogle Scholar
  105. Wise KAJ, Fearon CE, Wilkes OR (1964) Entomological investigations in Antarctica, 1962–1963 season. Pac Inst 6:541–570Google Scholar
  106. Wise KAJ (1967) Collembola (springtails). Antarct Res Ser 10:123–148Google Scholar
  107. Wise KAJ (1971) The Collembola of Antarctica. Pacific Insect Monogr 25:57–74Google Scholar
  108. Womersley H, Strandtmann RW (1963) On some free living prostigmatic mites of Antarctica. Pac Insect 5:451–472Google Scholar
  109. Worland MR, Convey P (2001) Rapid cold hardening in Antarctic microarthropods. Funct Ecol 15:515–524CrossRefGoogle Scholar
  110. Wright JC (2001) Cryptobiosis 300 years on from van Leuwenhoek: What have we learned about tardigrades? Zool Anz 240:563–582Google Scholar
  111. Yeates GW (1970) Terrrestrial nematodes from the Bunger Hills and Gaussberg, Antarctica. NZ J Zool 6:41–643Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ian D. Hogg
    • 1
    Email author
  • Mark I. Stevens
    • 1
  • Diana H. Wall
    • 1
  1. 1.University of WaikatoHamiltonNew Zealand

Personalised recommendations