Implementing STEP-NC: Exploring Possibilities for the Future of Advanced Manufacturing

  • Kelvin Hamilton
  • Jean-Yves Hascoet
  • Matthieu Rauch
Part of the Materials Forming, Machining and Tribology book series (MFMT)


This chapter contains a summary of the current state of the ISO data model ISO14649 for Numerical Controller also known as STEP-NC. It details the reasons and need for an industrial STEP-NC paradigm shift by showing the benefits that would be immediately realizable using currently available tools and knowledge. Specific focus is given to the SPAIM application as it is one of the most advanced STEP-NC enabling applications available today that allows realizing those benefits. In considering the future possibilities of STEP-NC and the need for continued implementation, four important and complex topics are addressed. These topics would enable an increase in: interoperability through hybrid manufacturing environments, manufacturing supervision and traceability, flexibility and efficiency with high knowledge and information transfer as well as production optimization and simulation in multi-process manufacturing. Finally, a brief synopsis of the systems and components necessary for machine migration to STEP-NC using the SPAIM enabling application is given.


  1. 1.
    ISO_6983-1(1982) Numerical control of machines—Program format and definition of address words—Part 1: data format for positioning, line motion and contouring control systems. In: International Standard OrganizationGoogle Scholar
  2. 2.
    Pratt MJ (2001) Introduction to ISO 10303—the STEP standard for product data exchange. J Comput Inf Sci Eng 1:102–103CrossRefGoogle Scholar
  3. 3.
    Newman ST, Nassehi A, Xu XW, Rosso RSU Jr, Wang L, Yusof Y et al (2008) Strategic advantages of interoperability for global manufacturing using CNC technology. Robot Comput Integr Manuf 24:699–708CrossRefGoogle Scholar
  4. 4.
    ISO_14649-10 (2004) ISO 14649 part 10—international standard organization. Industrial automation systems and integration—physical device control—data model for computerized numerical controllers—part 10, general process data. ISO TC 184/SC1/WG7/FDISGoogle Scholar
  5. 5.
    Weck M, Wolf J, Kiritsis D (2001) The STEP compliant NC programming interface evaluation and improvements on the modern interface. In: IMS project forum. Verita, AsconaGoogle Scholar
  6. 6.
    STEP Tools, ST-Machine STEP-NC for CAM-CNCGoogle Scholar
  7. 7.
    Newman ST, Allen RD, Rosso JRSU (2003) CAD/CAM solutions for STEP-compliant CNC manufacture. Int J Comput Integr Manuf 16:590CrossRefGoogle Scholar
  8. 8.
    Wang H, Xu X, Tedford JD (2007) An adaptable CNC system based on STEP-NC and function blocks. Int J Prod Res 45:3809–3829CrossRefGoogle Scholar
  9. 9.
    Minhat M, Vyatkin V, Xu X, Wong S, Al-Bayaa Z (2009) A novel open CNC architecture based on STEP-NC data model and IEC 61499 function blocks. Robot Comput Integr Manuf 25:560–569CrossRefGoogle Scholar
  10. 10.
    Suh SH, Lee BE, Chung DH, Cheon SU (2003) Architecture and implementation of a shop-floor programming system for STEP-compliant CNC. C-A Design 35:1069–1083CrossRefGoogle Scholar
  11. 11.
    Xu XW (2006) Realization of STEP-NC enabled machining. Robot Comput Integr Manuf 22:144–153CrossRefGoogle Scholar
  12. 12.
    Shin S-J, Suh S-H, Stroud I (2007) Reincarnation of G-code based part programs into STEP-NC for turning applications. Comput Aided Des 39:1–16CrossRefGoogle Scholar
  13. 13.
    Xu L (2009) STEP-NC in support of machining process optimization. In: Xu X, Nee AYC (eds) Advanced design and manufacturing based on STEP. Springer, London, pp 169–196Google Scholar
  14. 14.
    Ridwan F, Xu X, Liu G (2012) A framework for machining optimization based on STEP-NC. J Intell Manuf 23(3):423–441Google Scholar
  15. 15.
    Kumar S, Nassehi A, Newman ST, Allen RD, Tiwari MK (2007) Process control in CNC manufacturing for discrete components: a STEP-NC compliant framework. Robot Comput Integr Manuf 23(6):667–676CrossRefGoogle Scholar
  16. 16.
    Martin YS, Gimenez M, Rauch M, Hascoet JY (2006) VERNE—a new 5-axes hybrid architecture machining centre. 5th Chemnitzer Parallelkinematik Seminar. Chemnitz (Germany), April 25–26, pp 657–676Google Scholar
  17. 17.
    Delcam. PowerSHAPE—CAD Design and Modelling Software. Accessed 2008
  18. 18.
    Delcam. PowerMILL—Your Total Manufacturing Solution. Accessed 2008
  19. 19.
    Dugas A, Lee JJ, Terrier M, Hascoet JY (2003) Development of a machining simulator considering machine behaviour. Proc Inst Mech Eng B J Eng Manuf 217(9):1333–1339CrossRefGoogle Scholar
  20. 20.
    Seo TI, Dépincé P, Hascoet JY (1997) Paths compensation for tool deflection in end milling. Ifac-Ims Intelligent Manufacturing Systems. Seoul (Korea), July 21–23Google Scholar
  21. 21.
    Sokolov A, Richard J, Nguyen VK, Stroud I, Maeder W, Xirouchakis P (2006) Algorithms and an extended STEP-NC-compliant data model for wire electro discharge machining based on 3D representations. Int J Comput Integr Manuf 19(6):603–613CrossRefGoogle Scholar
  22. 22.
    Laguionie R, Rauch M, Hascoet J-Y (2009) Simulation and optimization in a multi-process environment using STEP-NC. IEEE ICCA 2009:2384–2391Google Scholar
  23. 23.
    Newman ST, Nassehi A (2007) Universal manufacturing platform for CNC machining. CIRP Ann Manuf Technol 56(1):459–462Google Scholar
  24. 24.
    Suh SH, Shin SJ, Yoon JS, Um JM (2008) UbiDM: a new paradigm for product design and manufacturing via ubiquitous computing technology. Int J Comput Integr Manuf 21(5):540–549Google Scholar
  25. 25.
    Laguionie R, Rauch M, Hascoët JY, Suh SH (2011) An eXtended manufacturing integrated system for feature-based manufacturing with STEP-NC. Int J Comput Integr Manuf 24(9):785–799Google Scholar
  26. 26.
    Rauch M, Laguionie R, Hascoët JY, Xu X (2009) Enhancing CNC manufacturing interoperability with STEP-NC. J Mach Eng 9(4):26–37Google Scholar
  27. 27.
    IEC 61499 (2005) Function blocks for industrial-process measurement and control systems-part 1: architectureGoogle Scholar
  28. 28.
    Hentz JB, Nguyen VK, Mader W, Panarese D, Gunnink JW, Gontarz A, Stavropoulos P, Hamilton K, Hascoet JY (2012) An enabling digital foundation towards smart machining. CIRP ICME 2012Google Scholar
  29. 29.
    ISO14649-13 (2003) ISO14649 part13—industrial automation systems and integration—physical device control-data model for computerized numerical controllers—part 13, process data for wire-EDM. TC 184/SC 1Google Scholar
  30. 30.
    Sokolov A, Richard J, Nguyen VK, Stroud I, Maeder W, Xirouchakis P (2006) Algorithms and an extended STEP-NC-compliant data model for wire electro discharge machining based on 3D representations. Int J Comput Integr Manuf 19:603–613CrossRefGoogle Scholar
  31. 31.
    Bonnard R, Mognol P, Hascoet JY (2008) Rapid prototyping project description in STEP-NC model. In: Proceedings of the sixth CIRP international seminar on intelligent computation in manufacturing engineering, Naples, ItalyGoogle Scholar
  32. 32.
    Babic B, Nesic N, Miljkovic Z (2008) A review of automated feature recognition with rule-based pattern recognition. Comput Ind 59:321–337CrossRefGoogle Scholar
  33. 33.
    Barnes S, Timms N, Bryden B, Pashby I (2003) High power diode laser cladding. J Mater process Technol 138:411–416CrossRefGoogle Scholar
  34. 34.
    Xu X et al (2006) STEP-compliant process planning and manufacturing. Int J Comput Integr Manuf 19:491–494CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Kelvin Hamilton
    • 1
  • Jean-Yves Hascoet
    • 1
  • Matthieu Rauch
    • 1
  1. 1.IRCCYN UMR CNRS 6597NantesFrance

Personalised recommendations