The Inverse Method for Many-Valued Logics

  • Laura Kovács
  • Andrei Mantsivoda
  • Andrei Voronkov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8265)

Abstract

We define an automatic proof procedure for finitely many-valued logics given by truth tables. The proof procedure is based on the inverse method. To define this procedure, we introduce so-called introduction-based sequent calculi. By studying proof-theoretic properties of these calculi we derive efficient validity- and satisfiability-checking procedures based on the inverse method. We also show how to translate the validity problem for a formula to unsatisfiability checking of a set of propositional clauses.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ansótegui, C., Bonet, M.L., Levy, J., Manyà, F.: Mapping CSP into Many-Valued SAT. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 10–15. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Baaz, M., Fermüller, C.G.: Resolution for many-valued logics. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 107–118. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  3. 3.
    Baaz, M., Fermüller, C.G.: Resolution-based theorem proving for many-valued logics. Journal of Symbolic Computations 19, 353–391 (1995)CrossRefMATHGoogle Scholar
  4. 4.
    Baaz, M., Fermüller, C.G., Ovrutcki, A., Zach, R.: MULTLOG: a system for axiomatizing many-valued logics. In: Voronkov, A. (ed.) LPAR 1993. LNCS, vol. 698, pp. 345–347. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  5. 5.
    Baaz, M., Fermüller, C.G., Zach, R.: Systematic construction of natural deduction systems for many-valued logics. In: Proc. 23rd International Symposium on Multiple-Valued Logics, Los Gatos, CA, pp. 208–213. IEEE Computer Society Press (1993)Google Scholar
  6. 6.
    Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 2, vol. I, pp. 19–99. Elsevier Science (2001)Google Scholar
  7. 7.
    Beckert, B., Hähnle, R., Manyà, F.: Transformations between signed and classical clause logic. In: ISMVL, pp. 248–255 (1999)Google Scholar
  8. 8.
    Carnielli, W.A.: Systematization of finite many-valued logics through the method of tableaux. Journal of Symbolic Logic 52(2), 473–493 (1987)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Carnielli, W.A.: On sequents and tableaux for many-valued logics. Journal of Non-Classical Logics 8(1), 59–76 (1991)MathSciNetMATHGoogle Scholar
  10. 10.
    Degtyarev, A., Voronkov, A.: The inverse method. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 4, vol. I, pp. 179–272. Elsevier Science (2001)Google Scholar
  11. 11.
    Dershowitz, N., Plaisted, D.A.: Rewriting. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 9, vol. I, pp. 535–610. Elsevier Science (2001)Google Scholar
  12. 12.
    Gentzen, G.: Untersuchungen über das logische Schließen. Mathematical Zeitschrift 39, 176–210, 405–431 (1934); Translated as [13]Google Scholar
  13. 13.
    Gentzen, G.: Investigations into logical deduction. In: Szabo, M.E. (ed.) The Collected Papers of Gerhard Gentzen, pp. 68–131. North Holland, Amsterdam (1969); reprinted from [12]Google Scholar
  14. 14.
    Hähnle, R.: Automated Deduction in Multiple-Valued Logics. Clarendon Press, Oxford (1993)MATHGoogle Scholar
  15. 15.
    Hähnle, R.: Short conjunctive normal forms in finitely valued logics. Journal of Logic and Computation 4(6), 905–927 (1994)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Lifschitz, V.: What is the inverse method? Journal of Automated Reasoning 5(1), 1–23 (1989)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Yu, S.: Maslov. An inverse method for establishing deducibility of nonprenex formulas of the predicate calculus. Soviet Mathematical Doklady 172(1), 22–25 (1983); reprinted as [20]Google Scholar
  18. 18.
    Maslov, S.Y.: Relationship between tactics of the inverse method and the resolution method. Zapiski Nauchnyh Seminarov LOMI 16 (1969) (in Russian); Reprinted as [21]Google Scholar
  19. 19.
    Maslov, S.Y.: Proof-search strategies for methods of the resolution type. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 6, pp. 77–90. American Elsevier (1971)Google Scholar
  20. 20.
    Maslov, S.Y.: An inverse method for establishing deducibility of nonprenex formulas of the predicate calculus. In: Siekmann, J., Wrightson, G. (eds.) Automation of Reasoning (Classical papers on Computational Logic), vol. 2, pp. 48–54. Springer (1983); reprinted from [17]Google Scholar
  21. 21.
    Yu Maslov, S.: Relationship between tactics of the inverse method and the resolution method. In: Siekmann, J., Wrightson, G. (eds.) Automation of Reasoning (Classical papers on Computational Logic), vol. 2, pp. 264–272. Springer (1983); Reprinted from [18]Google Scholar
  22. 22.
    McLaughlin, S., Pfenning, F.: Efficient intuitionistic theorem proving with the polarized inverse method. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 230–244. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Mints, G.: Gentzen-type systems and resolution rules. Part I. Propositional logic. In: Martin-Löf, P., Mints, G. (eds.) COLOG 1988. LNCS, vol. 417, pp. 198–231. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  24. 24.
    Murray, N.V., Rosenthal, E.: Improving tableau deductions in multiple-valued logics. In: Proceedings of the 21st International Symposium on Multiple-Valued logics, Los Alamitos, pp. 230–237. IEEE Computer Society Press (1991)Google Scholar
  25. 25.
    Murray, N.V., Rosenthal, E.: Resolution and path dissolution in multiple-valued logics. In: Proceedings International Symposium on Methodologies for Intelligent Systems, Charlotte (1991)Google Scholar
  26. 26.
    Murray, N.V., Rosenthal, E.: Signed formulas: a liftable meta-logic for multiple-valued logics. In: Komorowski, J., Raś, Z.W. (eds.) ISMIS 1993. LNCS, vol. 689, pp. 230–237. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  27. 27.
    O’Hearn, P., Stachniak, Z.: A resolution framework for finitely-valued first-order logics. Journal of Symbolic Computations 13, 235–254 (1992)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Robinson, J.A.: Robinson. Automatic deduction with hyper-resolution. International Journal of Computer Mathematics 1, 227–234 (1965); Reprinted as [29]Google Scholar
  29. 29.
    Robinson, J.A.: Automatic deduction with hyperresolution. In: Siekmann, J., Wrightson, G. (eds.) Automation of Reasoning. Classical Papers on Computational Logic, vol. 1, pp. 416–423. Springer (1983); Originally appeared as [28]Google Scholar
  30. 30.
    Rousseau, G.: Sequents in many-valued logic 1. Fundamenta Mathematikae, LX, 23–33 (1967)Google Scholar
  31. 31.
    Voronkov, A.: LISS — the logic inference search system. In: Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp. 677–678. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  32. 32.
    Voronkov, A.: Theorem proving in non-standard logics based on the inverse method. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 648–662. Springer, Heidelberg (1992)Google Scholar
  33. 33.
    Voronkov, A.: Deciding K using kk. In: Cohn, A.G., Giunchiglia, F., Selman, B. (eds.) Principles of Knowledge Representation and Reasoning (KR 2000), pp. 198–209 (2000)Google Scholar
  34. 34.
    Voronkov, A.: How to optimize proof-search in modal logics: new methods of proving redundancy criteria for sequent calculi. ACM Transactions on Computational Logic 2(2), 182–215 (2001)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Laura Kovács
    • 1
  • Andrei Mantsivoda
    • 2
  • Andrei Voronkov
    • 3
  1. 1.Chalmers University of TechnologySweden
  2. 2.Irkutsk State UniversityRussia
  3. 3.The University of ManchesterUK

Personalised recommendations