Advertisement

The Inverse Method for Many-Valued Logics

  • Laura Kovács
  • Andrei Mantsivoda
  • Andrei Voronkov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8265)

Abstract

We define an automatic proof procedure for finitely many-valued logics given by truth tables. The proof procedure is based on the inverse method. To define this procedure, we introduce so-called introduction-based sequent calculi. By studying proof-theoretic properties of these calculi we derive efficient validity- and satisfiability-checking procedures based on the inverse method. We also show how to translate the validity problem for a formula to unsatisfiability checking of a set of propositional clauses.

Keywords

Inference Rule Theorem Prove Inverse Method Automate Reasoning Propositional Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ansótegui, C., Bonet, M.L., Levy, J., Manyà, F.: Mapping CSP into Many-Valued SAT. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 10–15. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Baaz, M., Fermüller, C.G.: Resolution for many-valued logics. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 107–118. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  3. 3.
    Baaz, M., Fermüller, C.G.: Resolution-based theorem proving for many-valued logics. Journal of Symbolic Computations 19, 353–391 (1995)CrossRefzbMATHGoogle Scholar
  4. 4.
    Baaz, M., Fermüller, C.G., Ovrutcki, A., Zach, R.: MULTLOG: a system for axiomatizing many-valued logics. In: Voronkov, A. (ed.) LPAR 1993. LNCS, vol. 698, pp. 345–347. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  5. 5.
    Baaz, M., Fermüller, C.G., Zach, R.: Systematic construction of natural deduction systems for many-valued logics. In: Proc. 23rd International Symposium on Multiple-Valued Logics, Los Gatos, CA, pp. 208–213. IEEE Computer Society Press (1993)Google Scholar
  6. 6.
    Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 2, vol. I, pp. 19–99. Elsevier Science (2001)Google Scholar
  7. 7.
    Beckert, B., Hähnle, R., Manyà, F.: Transformations between signed and classical clause logic. In: ISMVL, pp. 248–255 (1999)Google Scholar
  8. 8.
    Carnielli, W.A.: Systematization of finite many-valued logics through the method of tableaux. Journal of Symbolic Logic 52(2), 473–493 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Carnielli, W.A.: On sequents and tableaux for many-valued logics. Journal of Non-Classical Logics 8(1), 59–76 (1991)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Degtyarev, A., Voronkov, A.: The inverse method. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 4, vol. I, pp. 179–272. Elsevier Science (2001)Google Scholar
  11. 11.
    Dershowitz, N., Plaisted, D.A.: Rewriting. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 9, vol. I, pp. 535–610. Elsevier Science (2001)Google Scholar
  12. 12.
    Gentzen, G.: Untersuchungen über das logische Schließen. Mathematical Zeitschrift 39, 176–210, 405–431 (1934); Translated as [13]Google Scholar
  13. 13.
    Gentzen, G.: Investigations into logical deduction. In: Szabo, M.E. (ed.) The Collected Papers of Gerhard Gentzen, pp. 68–131. North Holland, Amsterdam (1969); reprinted from [12]Google Scholar
  14. 14.
    Hähnle, R.: Automated Deduction in Multiple-Valued Logics. Clarendon Press, Oxford (1993)zbMATHGoogle Scholar
  15. 15.
    Hähnle, R.: Short conjunctive normal forms in finitely valued logics. Journal of Logic and Computation 4(6), 905–927 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lifschitz, V.: What is the inverse method? Journal of Automated Reasoning 5(1), 1–23 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Yu, S.: Maslov. An inverse method for establishing deducibility of nonprenex formulas of the predicate calculus. Soviet Mathematical Doklady 172(1), 22–25 (1983); reprinted as [20]Google Scholar
  18. 18.
    Maslov, S.Y.: Relationship between tactics of the inverse method and the resolution method. Zapiski Nauchnyh Seminarov LOMI 16 (1969) (in Russian); Reprinted as [21]Google Scholar
  19. 19.
    Maslov, S.Y.: Proof-search strategies for methods of the resolution type. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 6, pp. 77–90. American Elsevier (1971)Google Scholar
  20. 20.
    Maslov, S.Y.: An inverse method for establishing deducibility of nonprenex formulas of the predicate calculus. In: Siekmann, J., Wrightson, G. (eds.) Automation of Reasoning (Classical papers on Computational Logic), vol. 2, pp. 48–54. Springer (1983); reprinted from [17]Google Scholar
  21. 21.
    Yu Maslov, S.: Relationship between tactics of the inverse method and the resolution method. In: Siekmann, J., Wrightson, G. (eds.) Automation of Reasoning (Classical papers on Computational Logic), vol. 2, pp. 264–272. Springer (1983); Reprinted from [18]Google Scholar
  22. 22.
    McLaughlin, S., Pfenning, F.: Efficient intuitionistic theorem proving with the polarized inverse method. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 230–244. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Mints, G.: Gentzen-type systems and resolution rules. Part I. Propositional logic. In: Martin-Löf, P., Mints, G. (eds.) COLOG 1988. LNCS, vol. 417, pp. 198–231. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  24. 24.
    Murray, N.V., Rosenthal, E.: Improving tableau deductions in multiple-valued logics. In: Proceedings of the 21st International Symposium on Multiple-Valued logics, Los Alamitos, pp. 230–237. IEEE Computer Society Press (1991)Google Scholar
  25. 25.
    Murray, N.V., Rosenthal, E.: Resolution and path dissolution in multiple-valued logics. In: Proceedings International Symposium on Methodologies for Intelligent Systems, Charlotte (1991)Google Scholar
  26. 26.
    Murray, N.V., Rosenthal, E.: Signed formulas: a liftable meta-logic for multiple-valued logics. In: Komorowski, J., Raś, Z.W. (eds.) ISMIS 1993. LNCS, vol. 689, pp. 230–237. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  27. 27.
    O’Hearn, P., Stachniak, Z.: A resolution framework for finitely-valued first-order logics. Journal of Symbolic Computations 13, 235–254 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Robinson, J.A.: Robinson. Automatic deduction with hyper-resolution. International Journal of Computer Mathematics 1, 227–234 (1965); Reprinted as [29]Google Scholar
  29. 29.
    Robinson, J.A.: Automatic deduction with hyperresolution. In: Siekmann, J., Wrightson, G. (eds.) Automation of Reasoning. Classical Papers on Computational Logic, vol. 1, pp. 416–423. Springer (1983); Originally appeared as [28]Google Scholar
  30. 30.
    Rousseau, G.: Sequents in many-valued logic 1. Fundamenta Mathematikae, LX, 23–33 (1967)Google Scholar
  31. 31.
    Voronkov, A.: LISS — the logic inference search system. In: Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp. 677–678. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  32. 32.
    Voronkov, A.: Theorem proving in non-standard logics based on the inverse method. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 648–662. Springer, Heidelberg (1992)Google Scholar
  33. 33.
    Voronkov, A.: Deciding K using kk. In: Cohn, A.G., Giunchiglia, F., Selman, B. (eds.) Principles of Knowledge Representation and Reasoning (KR 2000), pp. 198–209 (2000)Google Scholar
  34. 34.
    Voronkov, A.: How to optimize proof-search in modal logics: new methods of proving redundancy criteria for sequent calculi. ACM Transactions on Computational Logic 2(2), 182–215 (2001)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Laura Kovács
    • 1
  • Andrei Mantsivoda
    • 2
  • Andrei Voronkov
    • 3
  1. 1.Chalmers University of TechnologySweden
  2. 2.Irkutsk State UniversityRussia
  3. 3.The University of ManchesterUK

Personalised recommendations