Advertisement

Some Properties of Logic N-GLukG

  • Mauricio Osorio
  • José Luis Carballido
  • Claudia Zepeda
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8265)

Abstract

We present an extension of GLukG, a logic that was introduced in [8] as a three-valued logic under the name of G3. GLukG is a paraconsistent logic defined in terms of 15 axioms, which serves as the formalism to define the p-stable semantics of logic programming. We introduce a new axiomatic system, N-GLukG, a paraconsistent logic that possesses strong negation. We use the 5-valued logic N5, which is a conservative extension of GLukG, to help us to prove that N-GLukG is an extension of GLukG. N-GLukG can be used as the formalism to define the p-stable semantics as well as the stable semantics.

Keywords

paraconsistent knowledge representation semantics logic programming semantics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Béziau, J.-Y.: The paraconsistent logic z a possible solution to jaśkowski’s problem. Logic and Logical Philosophy 15(2), 99–111 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Carnielli, W., Coniglio, M.E., Marcos, J.: Logics of formal inconsistency. In: Handbook of Philosophical Logic, pp. 1–93. Springer (2007)Google Scholar
  3. 3.
    Da Costa, N.C.A.: On the theory of inconsistent formal systems. Notre Dame Journal of Formal Logic 15(4), 497–510 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Galindo, M.O., Pérez, J.A.N., Ramírez, J.A.R., Macías, V.B.: Logics with common weak completions. Journal of Logic and Computation 16(6), 867–890 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Carballido, J.L., Osorio, M., Zepeda, C., et al.: Mathematical Models. Section 2: N’5 as an extension of G’3. In: Mathematical Models and ITC: Theory and Applications. Benemérita Universidad Autónoma de Puebla PressGoogle Scholar
  6. 6.
    Elliot Mendelson. Introduction to mathematical logic. CRC Press (1997)Google Scholar
  7. 7.
    Ortiz, M., Osorio, M.: Strong negation and equivalence in the safe belief semantics. Journal of Logic and Computation 17(3), 499–515 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Galindo, M.O., Carranza, J.L.C.: Brief study of g’3 logic. Journal of Applied Non-Classical Logics 18(4), 475–499 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Galindo, M.O., Carranza, J.L.C., Cortes, C.Z.: N′5 and some of its properties. To appear in Electronic Proceedings of 7th Alberto Mendelzon International Workshop on Foundations of Data Management (AMW 2013). CEUR Workshop Proceedings, ceur-ws.org (2013), http://ceur-ws.org/
  10. 10.
    Pearce, D.: Stable inference as intuitionistic validity. The Journal of Logic Programming 38(1), 79–91 (1999)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mauricio Osorio
    • 1
  • José Luis Carballido
    • 2
  • Claudia Zepeda
    • 2
  1. 1.Universidad de las AméricasCholulaMéxico
  2. 2.Facultad de Ciencias de la ComputaciónBenemérita Universidad Autónoma de PueblaMéxico

Personalised recommendations