Advertisement

An Ant Colony Algorithm for Improving Ship Stability in the Containership Stowage Problem

  • Paula Hernández Hernández
  • Laura Cruz-Reyes
  • Patricia Melin
  • Julio Mar-Ortiz
  • Héctor Joaquín Fraire Huacuja
  • Héctor José Puga Soberanes
  • Juan Javier González Barbosa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8266)

Abstract

This paper approaches the containership stowage problem. It is an NP-hard minimization problem whose goal is to find optimal plans for stowing containers into a containership with low operational costs, subject to a set of structural and operational constraints. In this work, we apply to this problem an ant-based hyperheuristic algorithm for the first time, according to our literature review. Ant colony and hyperheuristic algorithms have been successfully used in others application domains. We start from the initial solution, based in relaxed ILP model; then, we look for the global ship stability of the overall stowage plan by using a hyperheuristic approach. Besides, we reduce the handling time of the containers to be loaded on the ship. The validation of the proposed approach is performed by solving some pseudo-randomly generated instances constructed through ranges based in real-life values obtained from the literature.

Keywords

Containership Stowage Problem Ant Colony Optimization Hyperheuristic Approach 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambrosino, D., Sciomachen, A., Tanfani, E.: Stowing a containership: the master bay plan problem. Transportation Research Part A: Policy and Practice 38, 81–99 (2004)CrossRefGoogle Scholar
  2. 2.
    Cruz-Reyes, L., Paula Hernández, H., Melin, P., Fraire H., H.J., Mar O., J.: Constructive algorithm for a benchmark in ship stowage planning. In: Castillo, O., Melin, P., Kacprzyk, J. (eds.) Recent Advances on Hybrid Intelligent Systems. SCI, vol. 451, pp. 393–408. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Delgado, A., Jensen, R.M., Janstrup, K., Rose, T.H., Andersen, K.H.: A Constraint Programming Model for Fast Optimal Stowage of Container Vessel Bays. European Journal of Operational Research (2012)Google Scholar
  4. 4.
    Ambrosino, D., Anghinolfi, D., Paolucci, M., Sciomachen, A.: A new three-stepheuristic for the master bay plan problem. Maritime Economics & Logistics 11, 98–120 (2009)CrossRefGoogle Scholar
  5. 5.
    Burke, E.K., Hyde, M.R., Kendall, G., Ochoa, G., Ozcan, E., Woodward, J.R.: Exploring Hyper-heuristic Methodologies with Genetic Programming. In: Mumford, C.L., Jain, L.C. (eds.) Computational Intelligence. ISRL, vol. 1, pp. 177–201. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Özcan, E., Bilgin, B., Korkmaz, E.: A Comprehensive Analysis of Hyper-heuristics. Journal Intelligent Data Analysis. Computer & Communication Sciences 12(1), 3–23 (2008)Google Scholar
  7. 7.
    Maniezzo, V., Carbonaro, A.: Ant colony optimization: an overview. In: Essays and Surveys in Metaheuristics, pp. 469–492. Springer (2002)Google Scholar
  8. 8.
    Dorigo, M., Stützle, T.: Ant colony optimization: overview and recent advances. In: Handbook of Metaheuristics, pp. 227–263. Springer (2010)Google Scholar
  9. 9.
    Dorigo, M., Stützle, T.: The ant colony optimization metaheuristic: Algorithms, applications, and advances. In: Handbook of Metaheuristics, pp. 250–285. Springer (2003)Google Scholar
  10. 10.
    Burke, E., Kendall, G., Landa Silva, D., O’Brien, R., Soubeiga, E.: An ant algorithm hyperheuristic for the project presentation scheduling problem. In: The 2005 IEEE Congress on Evolutionary Computation, vol. 3, pp. 2263–2270. IEEE (2005)Google Scholar
  11. 11.
    Hernández, P., Gómez, C., Cruz, L., Ochoa, A., Castillo, N., Rivera, G.: Hyperheuristic for the parameter tuning of a bio-inspired algorithm of query routing in P2P networks. In: Batyrshin, I., Sidorov, G. (eds.) MICAI 2011, Part II. LNCS, vol. 7095, pp. 119–130. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Dorigo, M., Blum, C.: Ant colony optimization theory: A survey. Theoretical Computer Science 344, 243–278 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 26, 29–41 (1996)CrossRefGoogle Scholar
  14. 14.
    García, S., Molina, D., Lozano, F., Herrera, F.: A study on the use of non-parametric testsfor analyzing the evolutionary algorithms’ behaviour: a case study on the CEC 2005 Special Session on Real Parameter Optimization. Journal of Heuristics (2008)Google Scholar
  15. 15.
    Cruz-Reyes, L., Gómez-Santillán, C., Castillo-García, N., Quiroz, M., Ochoa, A., Hernández-Hernández, P.: A visualization tool for heuristic algorithms analysis. In: Uden, L., Herrera, F., Bajo, J., Corchado, J.M. (eds.) 7th International Conference on KMO. AISC, vol. 172, pp. 515–524. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Paula Hernández Hernández
    • 1
  • Laura Cruz-Reyes
    • 1
  • Patricia Melin
    • 2
  • Julio Mar-Ortiz
    • 3
  • Héctor Joaquín Fraire Huacuja
    • 1
  • Héctor José Puga Soberanes
    • 4
  • Juan Javier González Barbosa
    • 1
  1. 1.Instituto Tecnológico de Ciudad MaderoMéxico
  2. 2.Tijuana Institute of TechnologyMéxico
  3. 3.Universidad Autónoma de TamaulipasMéxico
  4. 4.Instituto Tecnológico de LeónMéxico

Personalised recommendations