Finding Opinion Strength Using Rule-Based Parsing for Arabic Sentiment Analysis

  • Shereen Oraby
  • Yasser El-Sonbaty
  • Mohamad Abou El-Nasr
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8266)

Abstract

With increasing interest in sentiment analysis research and opinionated web content always on the rise, focus on analysis of text in various domains and different languages is a relevant and important task. This paper explores the problems of sentiment analysis and opinion strength measurement using a rule-based approach tailored to the Arabic language. The approach takes into account language-specific traits that are valuable to syntactically segment a text, and allow for closer analysis of opinion-bearing language queues. By using an adapted sentiment lexicon along with sets of opinion indicators, a rule-based methodology for opinion-phrase extraction is introduced, followed by a method to rate the parsed opinions and offer a measure of opinion strength for the text under analysis. The proposed method, even with a small set of rules, shows potential for a simple and scalable opinion-rating system, which is of particular interest for morphologically-rich languages such as Arabic.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: sentiment classification using machine learning techniques. In: Proceedings of the ACL 2002 Conference on Empirical Methods in Natural Language Processing, EMNLP 2002, vol. 10, pp. 79–86. Association for Computational Linguistics, Stroudsburg (2002)CrossRefGoogle Scholar
  2. 2.
    Yu, H., Hatzivassiloglou, V.: Towards answering opinion questions: separating facts from opinions and identifying the polarity of opinion sentences. In: Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing, EMNLP 2003. Association for Computational Linguistics, Stroudsburg (2003)Google Scholar
  3. 3.
    Bruce, R., Wiebe, J.: Recognizing subjectivity: a case study in manual tagging. Nat. Lang. Eng. 5, 187–205 (1999)CrossRefGoogle Scholar
  4. 4.
    Saleh, S., El-Sonbaty, Y.: A feature selection algorithm with redundancy reduction for text classification. In: 22nd International Symposium on Computer and Information Sciences, Turkey (2007)Google Scholar
  5. 5.
    Taboada, M., Brooke, J., Tofiloski, M., Voll, K., Stede, M.: Lexicon-based methods for sentiment analysis. Comput. Linguist. 37, 267–307 (2011)CrossRefGoogle Scholar
  6. 6.
    Liu, B.: Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers (2012)Google Scholar
  7. 7.
    Turney, P.: Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In: Proceedings of the 40th Annual Meeting of the Association of Computational Linguistics, Philadelphia, Pennsylvania (2002)Google Scholar
  8. 8.
    Kar, A., Mandal, D.: Finding opinion strength using fuzzy logic or web reviews. International Journal of Engineering and Industries 2(1) (2011)Google Scholar
  9. 9.
    Fu, G., Wang, X.: Chinese sentence-level sentiment classification based on fuzzy sets. In: Proceedings of the 23rd International Conference on Computational Linguistics: Posters, COLING 2010, pp. 312–319. Association for Computational Linguistics, Stroudsburg (2010)Google Scholar
  10. 10.
    Syed, A.Z., Aslam, M., Martinez-Enriquez, A.M.: Lexicon based sentiment analysis of urdu text using sentiunits. In: Sidorov, G., Hernández Aguirre, A., Reyes García, C.A. (eds.) MICAI 2010, Part I. LNCS, vol. 6437, pp. 32–43. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Abdul-Mageed, M., Diab, M., Korayem, M.: Subjectivity and sentiment analysis of modern standard arabic. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies: Short Papers, HLT 2011, vol. 2. Association for Computational Linguistics, Stroudsburg, pp. 587–591 (2011)Google Scholar
  12. 12.
    Abbasi, A., Chen, H., Salem, A.: Sentiment analysis in multiple languages: Feature selection for opinion classification in web forums. ACM Trans. Inf. Syst. 26 (2008)Google Scholar
  13. 13.
    Rushdi-Saleh, M., Martin-Valdivia, M., Urena-Lopez, L., Perea-Ortega, J.: Oca: Opinion corpus for arabic. J. Am. Soc. Inf. Sci. Technol. 62, 2045–2054 (2011)Google Scholar
  14. 14.
    Habash, N.: Introduction to Arabic Natural Language Processing. Synthesis Lectures on Human Language Technologies. Morgan & Claypool Publishers (2008)Google Scholar
  15. 15.
    Ryding, K.: A Reference Grammar of Modern Standard Arabic. Reference Grammars. Cambridge University Press, New York (2006)Google Scholar
  16. 16.
    Ezzeldin, A.M., Kholief, M.H., El-Sonbaty, Y.: ALQASIM: Arabic language question answer selection in machines. In: Forner, P., Müller, H., Paredes, R., Rosso, P., Stein, B. (eds.) CLEF 2013. LNCS, vol. 8138, pp. 100–103. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity in phrase-level sentiment analysis. In: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, HLT 2005, pp. 347–354. Association for Computational Linguistics, Stroudsburg (2005)CrossRefGoogle Scholar
  18. 18.
    Wilson, T., Hoffmann, P., Somasundaran, S., Kessler, J., Wiebe, J., Choi, Y., Cardie, C., Riloff, E., Patwardhan, S.: Opinionfinder: a system for subjectivity analysis. In: Proceedings of HLT/EMNLP on Interactive Demonstrations, HLT-Demo 2005, pp. 34–35. Association for Computational Linguistics, Stroudsburg (2005)CrossRefGoogle Scholar
  19. 19.
    Riloff, E., Wiebe, J.: Learning extraction patterns for subjective expressions. In: Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing, EMNLP 2003, pp. 105–112. Association for Computational Linguistics, Stroudsburg (2003)Google Scholar
  20. 20.
    ALTEC: Arabic mpqa subjective lexicon (2012), http://www.altec-center.org/

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Shereen Oraby
    • 1
  • Yasser El-Sonbaty
    • 2
  • Mohamad Abou El-Nasr
    • 1
  1. 1.Departments of Computer EngineeringArab Academy for Science and TechnologyAlexandriaEgypt
  2. 2.Computer ScienceArab Academy for Science and TechnologyAlexandriaEgypt

Personalised recommendations