Advertisement

Spatially-Varying Image Warping: Evaluations and VLSI Implementations

  • Pierre Greisen
  • Michael Schaffner
  • Danny Luu
  • Val Mikos
  • Simon Heinzle
  • Frank K. Gürkaynak
  • Aljoscha Smolic
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 418)

Abstract

Spatially-varying, non-linear image warping has gained growing interest due to the appearance of image domain warping applications such as aspect ratio retargeting or stereo remapping/stereo-to-multiview conversion. In contrast to the more common global image warping, e.g., zoom or rotation, the image transformation is now a spatially-varying mapping that, in principle, enables arbitrary image transformations. A practical constraint is that transformed pixels keep their relative ordering, i.e., there are no fold-overs. In this work, we analyze and compare spatially-varying image warping techniques in terms of quality and computational performance. In particular, aliasing artifacts, interpolation quality (sharpness), number of arithmetical operations, and memory bandwidth requirements are considered. Further, we provide an architecture based on Gaussian filtering and an architecture with bicubic interpolation and compare corresponding VLSI implementations.

Keywords

image-based rendering EWA splatting bicubic resampling video processing anti-aliasing interpolation quality complexity evaluation caching VLSI 

References

  1. 1.
    Akenine-Moller, T., Haines, E., Hoffman, N.: Real-time rendering. AK Peters (2008)Google Scholar
  2. 2.
    Asari, K.V.: Design of an efficient vlsi architecture for non-linear spatial warping of wide-angle camera images. Journal of Systems Architecture 50(12), 743–755 (2004), http://www.sciencedirect.com/science/article/pii/S1383762104000682 CrossRefGoogle Scholar
  3. 3.
    Chang, F.J., Tseng, Y.C., Chang, T.S.: A 94fps view synthesis engine for HD1080p video. In: 2011 IEEE Visual Communications and Image Processing (VCIP), pp. 1–4 (November 2011)Google Scholar
  4. 4.
    Cummings, C.: Simulation and synthesis techniques for asynchronous fifo design. In: SNUG 2002 (Synopsys Users Group Conference, San Jose, CA, 2002 User Papers (2002)Google Scholar
  5. 5.
    Do, M., Nguyen, Q., Nguyen, H., Kubacki, D., Patel, S.: Immersive visual communication. IEEE Signal Processing Magazine 28(1), 58–66 (2011)CrossRefGoogle Scholar
  6. 6.
    Farre, M., Wang, O., Lang, M., Stefanoski, N., Hornung, A., Smolic, A.: Automatic content creation for multiview autostereoscopic displays using image domain warping. In: 2011 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2011)Google Scholar
  7. 7.
    Greisen, P., Heinzle, S., Gross, M., Burg, A.: An FPGA-based processing pipeline for high-definition stereo video. EURASIP Journal on Image and Video Processing 2011(1), 18 (2011)Google Scholar
  8. 8.
    Greisen, P., Emler, R., Schaffner, M., Heinzle, S., Gurkaynak, F.: A general-transformation EWA view rendering engine for 1080p video in 130 nm CMOS. In: 2012 IEEE/IFIP 20th International Conference on VLSI and System-on-Chip (VLSI-SoC), pp. 105–110 (October 2012)Google Scholar
  9. 9.
    Greisen, P., Schaffner, M., Heinzle, S., Runo, M., Smolic, A., Burg, A., Kaeslin, H., Gross, M.: Analysis and vlsi implementation of ewa rendering for real-time hd video applications. Transactions on Circuits and Systems for Video Technology (2012) (accepted)Google Scholar
  10. 10.
    Heckbert, P.: Fundamentals of Texture Mapping and Image Warping. Masters thesis, Univ. of California, Berkeley, Dept. of Electrical Eng. and Computer Science (1989)Google Scholar
  11. 11.
    Horng, Y.R., Tseng, Y.C., Chang, T.S.: VLSI architecture for real-time HD 1080p view synthesis engine. IEEE Transactions on Circuits and Systems for Video Technology 21(9), 1329–1340 (2011)CrossRefGoogle Scholar
  12. 12.
    Huang, C.C., Chen, P.Y., Ma, C.H.: A novel interpolation chip for real-time multimedia applications. IEEE Transactions on Circuits and Systems for Video Technology 22(10), 1512–1525 (2012)CrossRefGoogle Scholar
  13. 13.
    Krähenbühl, P., Lang, M., Hornung, A., Gross, M.: A system for retargeting of streaming video. ACM Transactions on Graphics (TOG) 28(5), 1–10 (2009)CrossRefGoogle Scholar
  14. 14.
    Lang, M., Hornung, A., Wang, O., Poulakos, S., Smolic, A., Gross, M.: Nonlinear disparity mapping for stereoscopic 3D. ACM Trans. on Graphics (Proc. SIGGRAPH) 29(3) (2010)Google Scholar
  15. 15.
    Lin, C., Sheu, M., Chiang, H., Wu, Z., Tu, J., Chen, C.: A low-cost VLSI design of extended linear interpolation for real time digital image processing. In: International Conference on Embedded Software and Systems, ICESS 2008, pp. 196–202. IEEE (2008)Google Scholar
  16. 16.
    Lomont, C.: Fast inverse square root. Tech. rep., Purdue University (2003), http://www.lomont.org/Math/Papers/2003/InvSqrt.pdf
  17. 17.
    Oh, S., Kim, G.: Fpga-based fast image warping with data-parallelization schemes. IEEE Transactions on Consumer Electronics 54(4), 2053–2059 (2008)CrossRefGoogle Scholar
  18. 18.
    Szeliski, R., Winder, S., Uyttendaele, M.: High-quality multi-pass image resampling. Tech. rep., Microsoft Research (2010)Google Scholar
  19. 19.
    Tanimoto, M., Tehrani, M., Fujii, T., Yendo, T.: Free-viewpoint tv. IEEE Signal Processing Magazine 28(1), 67–76 (2011)CrossRefGoogle Scholar
  20. 20.
    Triggs, B.: Empirical filter estimation for subpixel interpolation and matching. In: International Conference on Computer Vision (ICCV), vol. 2, pp. 550–557 (2001)Google Scholar
  21. 21.
    Wolberg, G.: Digital image warping, vol. 3. IEEE Computer Society Press (1990)Google Scholar
  22. 22.
    Zwicker, M., Pfister, H., Baar, J.V., Gross, M.: EWA splatting. IEEE Transactions on Visualization and Computer Graphics 8(3), 223–238 (2002)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2013

Authors and Affiliations

  • Pierre Greisen
    • 1
    • 2
  • Michael Schaffner
    • 1
    • 2
  • Danny Luu
    • 1
  • Val Mikos
    • 1
  • Simon Heinzle
    • 2
  • Frank K. Gürkaynak
    • 1
  • Aljoscha Smolic
    • 1
    • 2
  1. 1.ETH ZurichSwitzerland
  2. 2.Disney Research ZurichSwitzerland

Personalised recommendations