Advertisement

Price of Anarchy for the N-Player Competitive Cascade Game with Submodular Activation Functions

  • Xinran He
  • David Kempe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8289)

Abstract

We study the Price of Anarchy (PoA) of the competitive cascade game following the framework proposed by Goyal and Kearns in [11]. Our main insight is that a reduction to a Linear Threshold Model in a time-expanded graph establishes the submodularity of the social utility function. From this observation, we deduce that the game is a valid utility game, which in turn implies an upper bound of 2 on the (coarse) PoA. This cleaner understanding of the model yields a simpler proof of a much more general result than that established by Goyal and Kearns: for the N-player competitive cascade game, the (coarse) PoA is upper-bounded by 2 under any graph structure. We also show that this bound is tight.

Keywords

Competitive cascade game Price of Anarchy Submodularity Valid utility game Influence maximization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., Feldman, M., Procaccia, A.D., Tennenholtz, M.: A note on competitive diffusion through social networks. Information Processing Letters 110, 221–225 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bharathi, S., Kempe, D., Salek, M.: Competitive influence maximization in social networks. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 306–311. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Blum, A., Hajiaghayi, M., Ligett, K., Roth, A.: Regret minimization and the price of total anarchy. In: Proc. 39th ACM Symp. on Theory of Computing, pp. 373–382 (2008)Google Scholar
  4. 4.
    Borodin, A., Filmus, Y., Oren, J.: Threshold models for competitive influence in social networks. In: Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 539–550. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Budak, C., Agrawal, D., Abbadi, A.E.: Limiting the spread of misinformation in social networks. In: 20th Intl. World Wide Web Conference, pp. 665–674 (2011)Google Scholar
  6. 6.
    Carnes, T., Nagarajan, C., Wild, S.M., van Zuylen, A.: Maximizing influence in a competitive social network: A follower’s perspective. In: Proc. Intl. Conf. on Electronic Commerce, ICEC (2007)Google Scholar
  7. 7.
    Chen, W., Collins, A., Cummings, R., Ke, T., Liu, Z., Rincon, D., Sun, X., Wang, Y., Wei, W., Yuan, Y.: Influence maximization in social networks when negative opinions emerge and propagate. In: Proc. 11th SIAM Intl. Conf. on Data Mining, pp. 379–390 (2011)Google Scholar
  8. 8.
    Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks. In: Proc. 15th Intl. Conf. on Knowledge Discovery and Data Mining, pp. 199–208 (2009)Google Scholar
  9. 9.
    Domingos, P., Richardson, M.: Mining the network value of customers. In: Proc. 7th Intl. Conf. on Knowledge Discovery and Data Mining, pp. 57–66 (2001)Google Scholar
  10. 10.
    Dubey, P., Garg, R., De Meyer, B.: Competing for customers in a social network: The quasi-linear case. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 162–173. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Goyal, S., Kearns, M.: Competitive contagion in networks. In: Proc. 43rd ACM Symp. on Theory of Computing, pp. 759–774 (2012)Google Scholar
  12. 12.
    He, X., Song, G., Chen, W., Jiang, Q.: Influence blocking maximization in social networks under the competitive linear threshold model. In: Proc. 12th SIAM Intl. Conf. on Data Mining (2012)Google Scholar
  13. 13.
    Immorlica, N., Kleinberg, J., Mahdian, M., Wexler, T.: The role of compatibility in the diffusion of technologies through social networks. In: Proc. 9th ACM Conf. on Electronic Commerce, pp. 75–83 (2007)Google Scholar
  14. 14.
    Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence in a social network. In: Proc. 9th Intl. Conf. on Knowledge Discovery and Data Mining, pp. 137–146 (2003)Google Scholar
  15. 15.
    Kempe, D., Kleinberg, J.M., Tardos, É.: Influential nodes in a diffusion model for social networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1127–1138. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Kimura, M., Saito, K.: Tractable models for information diffusion in social networks. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 259–271. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Mossel, E., Roch, S.: Submodularity of influence in social networks: From local to global. SIAM J. Comput. 39(6), 2176–2188 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Rogers, E.: Diffusion of innovations, 5th edn. Free Press (2003)Google Scholar
  19. 19.
    Roughgarden, T.: Intrinsic robustness of the price of anarchy. In: Proc. 40th ACM Symp. on Theory of Computing, pp. 513–522 (2009)Google Scholar
  20. 20.
    Tsai, J., Nguyen, T.H., Tambe, M.: Security games for controlling contagion. In: Proc. 27th AAAI Conf. on Artificial Intelligence (2012)Google Scholar
  21. 21.
    Tzoumas, V., Amanatidis, C., Markakis, E.: A game-theoretic analysis of a competitive diffusion process over social networks. In: Goldberg, P.W. (ed.) WINE 2012. LNCS, vol. 7695, pp. 1–14. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    Vetta, A.: Nash equlibria in competitive societies with applications to facility location, traffic routing and auctions. In: Proc. 43rd IEEE Symp. on Foundations of Computer Science, pp. 416–425 (2002)Google Scholar
  23. 23.
    Wang, C., Chen, W., Wang, Y.: Scalable influence maximization for independent cascade model in large-scale social networks. Data Mining and Knowledge Discovery Journal 25(3), 545–576 (2012)CrossRefzbMATHGoogle Scholar
  24. 24.
    Wang, Y., Cong, G., Song, G., Xie, K.: Community-based greedy algorithm for mining top-k influential nodes in mobile social networks. In: Proc. 16th Intl. Conf. on Knowledge Discovery and Data Mining, pp. 1039–1048 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Xinran He
    • 1
  • David Kempe
    • 1
  1. 1.Computer Science DepartmentUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations