Threshold-Coloring and Unit-Cube Contact Representation of Graphs

  • Md. Jawaherul Alam
  • Steven Chaplick
  • Gašper Fijavž
  • Michael Kaufmann
  • Stephen G. Kobourov
  • Sergey Pupyrev
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8165)

Abstract

We study threshold coloring of graphs where the vertex colors, represented by integers, describe any spanning subgraph of the given graph as follows. Pairs of vertices with near colors imply the edge between them is present and pairs of vertices with far colors imply the edge is absent. Not all planar graphs are threshold-colorable, but several subclasses, such as trees, some planar grids, and planar graphs with no short cycles can always be threshold-colored. Using these results we obtain unit-cube contact representation of several subclasses of planar graphs. We show the NP-completeness for two variants of the threshold coloring problem and describe a polynomial-time algorithm for another.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alam, M.J., Chaplick, S., Fijavž, G., Kaufmann, M., Kobourov, S.G., Pupyrev, S.: Threshold-coloring and unit-cube contact representation of graphs. ArXiv report (2013), http://arxiv.org/abs/1305.0069
  2. 2.
    Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph classes: A survey. Society for Industrial and Applied Mathematics (1999)Google Scholar
  3. 3.
    Bremner, D., et al.: On representing graphs by touching cuboids. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 187–198. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    de Fegueiredo, C.M.H., Meidanis, J., de Mello, C.P.: A linear-time algorithm for proper interval graph recognition. Information Processing Letter 56(3), 179–184 (1995)CrossRefGoogle Scholar
  5. 5.
    Felsner, S., Francis, M.C.: Contact representations of planar graphs with cubes. In: Symposium on Computational Geometry, pp. 315–320 (2011)Google Scholar
  6. 6.
    Golumbic, M.C., Kaplan, H., Shamir, R.: On the complexity of DNA physical mapping. Advances in Applied Mathematics 15(3), 251–261 (1994)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Golumbic, M.C., Kaplan, H., Shamir, R.: Graph sandwich problems. Journal of Algorithms 19(3), 449–473 (1995)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Hale, W.: Frequency assignment: Theory and applications. Proceedings of the IEEE 68(12), 1497–1514 (1980)CrossRefGoogle Scholar
  9. 9.
    Hammer, P.L., Peled, U.N., Sun, X.: Difference graphs. Discrete Applied Mathematics 28(1), 35–44 (1990)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Mahadev, N.V.R., Peled, U.N.: Threshold Graphs and Related Topics. N. Holland (1995)Google Scholar
  11. 11.
    Roberts, F.S.: Indifference graphs. In: Proof Techniques in Graph Theory, pp. 139–146. Academic Press (1969)Google Scholar
  12. 12.
    Roberts, F.S.: From garbage to rainbows: Generalizations of graph coloring and their applications. Graph Theory, Combinatorics, and Applications 2, 1031–1052 (1991)Google Scholar
  13. 13.
    Thomassen, C.: Interval representations of planar graphs. Journal of Combinatorial Theory, Series B 40(1), 9–20 (1986)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Md. Jawaherul Alam
    • 1
  • Steven Chaplick
    • 2
  • Gašper Fijavž
    • 3
  • Michael Kaufmann
    • 4
  • Stephen G. Kobourov
    • 1
  • Sergey Pupyrev
    • 1
    • 5
  1. 1.Department of Computer ScienceUniversity of ArizonaTucsonUSA
  2. 2.Department of Applied MathematicsCharles UniversityPragueCzech Republic
  3. 3.Faculty of Computer and Information ScienceUniversity of LjubljanaSlovenia
  4. 4.Wilhelm-Schickhard-Institut für InformatikUniversität TübingenTübingenGermany
  5. 5.Institute of Mathematics and Computer ScienceUral Federal UniversityRussia

Personalised recommendations