Colouring of Graphs with Ramsey-Type Forbidden Subgraphs

  • Konrad K. Dabrowski
  • Petr A. Golovach
  • Daniël Paulusma
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8165)

Abstract

A colouring of a graph G = (V,E) is a mapping c: V → {1,2,…} such that c(u) ≠ c(v) if uv ∈ E; if |c(V)| ≤ k then c is a k-colouring. The Colouring problem is that of testing whether a given graph has a k-colouring for some given integer k. If a graph contains no induced subgraph isomorphic to any graph in some family \({\cal H}\), then it is called \({\cal H}\)-free. The complexity of Colouring for \({\cal H}\)-free graphs with \(|{\cal H}|=1\) has been completely classified. When \(|{\cal H}|=2\), the classification is still wide open, although many partial results are known. We continue this line of research and forbid induced subgraphs {H1,H2}, where we allow H1 to have a single edge and H2 to have a single non-edge. Instead of showing only polynomial-time solvability, we prove that Colouring on such graphs is fixed-parameter tractable when parameterized by |H1| + |H2|. As a byproduct, we obtain the same result both for the problem of determining a maximum independent set and for the problem of determining a maximum clique.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brandstädt, A., Engelfriet, J., Le, H.-O., Lozin, V.V.: Clique-Width for 4-Vertex Forbidden Subgraphs. Theory Comput. Syst. 39, 561–590 (2006)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Brandstädt, A., Kratsch, D.: On the structure of (P 5, gem)-free graphs. Discrete Applied Mathematics 145, 155–166 (2005)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Brandstädt, A., Le, H.-O., Mosca, R.: Gem- and co-gem-free graphs have bounded clique-width. Internat. J. Found. Comput. Sci. 15, 163–185 (2004)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Broersma, H.J., Golovach, P.A., Paulusma, D., Song, J.: Determining the chromatic number of triangle-free 2P 3-free graphs in polynomial time. Theoretical Computer Science 423, 1–10 (2012)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Broersma, H.J., Golovach, P.A., Paulusma, D., Song, J.: Updating the complexity status of coloring graphs without a fixed induced linear forest. Theoretical Computer Science 414, 9–19 (2012)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Couturier, J.F., Golovach, P.A., Kratsch, D., Paulusma, D.: List coloring in the absence of a linear forest. In: Kolman, P., Kratochvíl, J. (eds.) WG 2011. LNCS, vol. 6986, pp. 119–130. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Couturier, J.F., Golovach, P.A., Kratsch, D., Paulusma, D.: On the parameterized complexity of coloring graphs in the absence of linear forest. Journal of Discrete Algorithms 15, 56–62 (2012)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Dabrowski, K., Lozin, V., Müller, H., Rautenbach, D.: Parameterized complexity of the weighted independent set problem beyond graphs of bounded clique number. Journal of Discrete Algorithms 14, 207–213 (2012)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Dabrowski, K., Lozin, V., Raman, R., Ries, B.: Colouring vertices of triangle-free graphs without forests. Discrete Mathematics 312, 1372–1385 (2012)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Diestel, R.: Graph Theory, Electronic Edition. Springer (2005)Google Scholar
  11. 11.
    Golovach, P.A., Paulusma, D.: List coloring in the absence of two subgraphs. In: Spirakis, P.G., Serna, M. (eds.) CIAC 2013. LNCS, vol. 7878, pp. 288–299. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Golovach, P.A., Paulusma, D., Song, J.: 4-Coloring H-free graphs when H is small. Discrete Applied Mathematics 161, 140–150 (2013)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Golovach, P.A., Paulusma, D., Song, J.: Closing complexity gaps for coloring problems on H-free graphs. In: Chao, K.-M., Hsu, T.-s., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 14–23. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Gravier, S., Hoáng, C.T., Maffray, F.: Coloring the hypergraph of maximal cliques of a graph with no long path. Discrete Mathematics 272, 285–290 (2003)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Gyárfás, A.: Problems from the world surrounding perfect graphs. Zastosowania Matematyki Applicationes Mathematicae XIX(3-4), 413–441 (1987)Google Scholar
  16. 16.
    Hoàng, C.T., Kamiński, M., Lozin, V., Sawada, J., Shu, X.: Deciding k-colorability of P 5-free graphs in polynomial time. Algorithmica 57, 74–81 (2010)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Hoàng, C.T., Maffray, F., Mechebbek, M.: A characterization of b-perfect graphs. Journal of Graph Theory 71, 95–122 (2012)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Král’, D., Kratochvíl, J., Tuza, Z., Woeginger, G.J.: Complexity of coloring graphs without forbidden induced subgraphs. In: Brandstädt, A., Le, V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 254–262. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Kobler, D., Rotics, U.: Edge dominating set and colorings on graphs with fixed clique-width. Discrete Applied Mathematics 126, 197–221 (2003)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Maffray, F., Preissmann, M.: On the NP-completeness of the k-colorability problem for triangle-free graphs. Discrete Mathematics 162, 313–317 (1996)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Randerath, B.: 3-colorability and forbidden subgraphs. I., Characterizing pairs. Discrete Mathematics 276, 313–325 (2004)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Randerath, B., Schiermeyer, I.: A note on Brooks’ theorem for triangle-free graphs, Australas. J. Combin. 26, 3–9 (2002)MathSciNetMATHGoogle Scholar
  23. 23.
    Randerath, B., Schiermeyer, I.: Vertex colouring and forbidden subgraphs - a survey. Graphs and Combinatorics 20, 1–40 (2004)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Randerath, B., Schiermeyer, I.: On maximum independent sets in P 5-free graphs. Discrete Applied Mathematics 158(9), 1041–1044 (2010)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Schindl, D.: Some new hereditary classes where graph coloring remains NP-hard. Discrete Mathematics 295, 197–202 (2005)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Tuza, Z.: Graph colorings with local restrictions - a survey, Discuss. Math. Graph Theory 17, 161–228 (1997)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Konrad K. Dabrowski
    • 1
  • Petr A. Golovach
    • 2
  • Daniël Paulusma
    • 3
  1. 1.ESSEC Business SchoolCergy PontoiseFrance
  2. 2.Department of InformaticsBergen UniversityBergenNorway
  3. 3.School of Engineering and Computing Sciences, Science LaboratoriesDurham UniversityDurhamUnited Kingdom

Personalised recommendations