Equilateral L-Contact Graphs

  • Steven Chaplick
  • Stephen G. Kobourov
  • Torsten Ueckerdt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8165)


We consider L-graphs, that is contact graphs of axis-aligned L-shapes in the plane, all with the same rotation. We provide several characterizations of L-graphs, drawing connections to Schnyder realizers and canonical orders of maximally planar graphs. We show that every contact system of L’s can always be converted to an equivalent one with equilateral L’s. This can be used to show a stronger version of a result of Thomassen, namely, that every planar graph can be represented as a contact system of square-based cuboids.

We also study a slightly more restricted version of equilateral L-contact systems and show that these are equivalent to homothetic triangle contact representations of maximally planar graphs. We believe that this new interpretation of the problem might allow for efficient algorithms to find homothetic triangle contact representations, that do not use Schramm’s monster packing theorem.


Planar Graph Intersection Graph Outer Face Edge Label Contact Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asinowski, A., Cohen, E., Golumbic, M.C., Limouzy, V., Lipshteyn, M., Stern, M.: Vertex intersection graphs of paths on a grid. J. Graph Algorithms Appl. 16(2), 129–150 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bremner, D., Evans, W., Frati, F., Heyer, L., Kobourov, S.G., Lenhart, W.J., Liotta, G., Rappaport, D., Whitesides, S.H.: On representing graphs by touching cuboids. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 187–198. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Chalopin, J., Gonçalves, D.: Every planar graph is the intersection graph of segments in the plane. In: 41st ACM Symp. on Theory of Computing (STOC), pp. 631–638 (2009)Google Scholar
  4. 4.
    Chaplick, S., Ueckerdt, T.: Planar graphs as VPG-graphs. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 174–186. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    de Castro, N., Cobos, F., Dana, J., Márquez, A., Noy, M.: Triangle-free planar graphs and segment intersection graphs. J. of Graph Algorithms and Applications 6(1), 7–26 (2002)CrossRefzbMATHGoogle Scholar
  6. 6.
    de Fraysseix, H., de Mendez, P.O., Pach, J.: Representation of planar graphs by segments. Intuitive Geometry 63, 109–117 (1991)Google Scholar
  7. 7.
    de Fraysseix, H., de Mendez, P.O., Rosenstiehl, P.: On triangle contact graphs. Combinatorics, Probability & Computing 3, 233–246 (1994)CrossRefzbMATHGoogle Scholar
  8. 8.
    de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Felsner, S.: Lattice structures from planar graphs. Electronic Journal of Combinatorics 11, R15 (2004)Google Scholar
  10. 10.
    Felsner, S., Francis, M.C.: Contact representations of planar graphs with cubes. In: Proc. 27th Symposium on Computational Geometry, pp. 315–320 (2011)Google Scholar
  11. 11.
    Fusy, É.: Transversal structures on triangulations: A combinatorial study and straight-line drawings. Discrete Mathematics 309(7), 1870–1894 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gonçalves, D., Lévêque, B., Pinlou, A.: Triangle contact representations and duality. In: Discrete & Computational Geometry, pp. 1–16 (2012)Google Scholar
  13. 13.
    Haas, R., Orden, D., Rote, G., Santos, F., Servatius, B., Servatius, H., Souvaine, D., Streinu, I., Whiteley, W.: Planar minimally rigid graphs and pseudo-triangulations. Computational Geometry 31, 31–61 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hopcroft, J., Tarjan, R.: Efficient planarity testing. J. ACM 21(4), 549–568 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kobourov, S., Ueckerdt, T., Verbeek, K.: Combinatorial and geometric properties of planar Laman graphs. In: 24th Symp. on Discrete Algorithms (SODA), pp. 1668–1678 (2013)Google Scholar
  16. 16.
    Koebe, P.: Kontaktprobleme der konformen Abbildung. Berichte über die Verhandlungen der Sächsischen Akad. der Wissenschaften zu Leipzig. Math.-Phys. Klasse 88, 141–164 (1936)Google Scholar
  17. 17.
    Rosenstiehl, P., Tarjan, R.: Rectilinear planar layouts and bipolar orientations of planar graphs. Discrete & Computational Geometry 1, 343–353 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Schnyder, W.: Embedding planar graphs on the grid. In: Proc. 1st ACM-SIAM Symposium on Discrete Algorithms, pp. 138–148 (1990)Google Scholar
  19. 19.
    Schramm, O.: Combinatorically prescribed packings and applications to conformal and quasiconformal maps. arXiv preprint arXiv:0709.0710 (2007)Google Scholar
  20. 20.
    Thomassen, C.: Interval representations of planar graphs. J. Comb. Theory, Ser. B 40(1), 9–20 (1986)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Steven Chaplick
    • 1
  • Stephen G. Kobourov
    • 2
  • Torsten Ueckerdt
    • 3
  1. 1.Dept. Applied MathematicsCharles UniversityPragueCzech Republic
  2. 2.Dept. of Computer ScienceUniversity of ArizonaTucsonUSA
  3. 3.Dept. of MathematicsKarlsruhe Istitute of TechnologyKarlsruheGermany

Personalised recommendations