Approximating the Generalized Minimum Manhattan Network Problem

  • Aparna Das
  • Krzysztof Fleszar
  • Stephen Kobourov
  • Joachim Spoerhase
  • Sankar Veeramoni
  • Alexander Wolff
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8283)

Abstract

We consider the generalized minimum Manhattan network problem (GMMN). The input to this problem is a set R of n pairs of terminals, which are points in ℝ2. The goal is to find a minimum-length rectilinear network that connects every pair in R by a Manhattan path, that is, a path of axis-parallel line segments whose total length equals the pair’s Manhattan distance. This problem is a natural generalization of the extensively studied minimum Manhattan network problem (MMN) in which R consists of all possible pairs of terminals. Another important special case is the well-known rectilinear Steiner arborescence problem (RSA). As a generalization of these problems, GMMN is NP-hard. No approximation algorithms are known for general GMMN. We obtain an O(logn)-approximation algorithm for GMMN. Our solution is based on a stabbing technique, a novel way of attacking Manhattan network problems. Some parts of our algorithm generalize to higher dimensions, yielding a simple O(log d + 1 n)-approximation algorithm for the problem in arbitrary fixed dimension d. As a corollary, we obtain an exponential improvement upon the previously best O(n ε )-ratio for MMN in d dimensions [ESA’11]. En route, we show that an existing O(logn)-approximation algorithm for 2D-RSA generalizes to higher dimensions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arora, S.: Approximation schemes for NP-hard geometric optimization problems: A survey. Math. Program. 97(1-2), 43–69 (2003)MathSciNetMATHGoogle Scholar
  2. 2.
    Chepoi, V., Nouioua, K., Vaxès, Y.: A rounding algorithm for approximating minimum Manhattan networks. Theor. Comput. Sci. 390(1), 56–69 (2008)CrossRefMATHGoogle Scholar
  3. 3.
    Chin, F., Guo, Z., Sun, H.: Minimum Manhattan network is NP-complete. Discrete Comput. Geom. 45, 701–722 (2011)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Cong, J., Leung, K.S., Zhou, D.: Performance-driven interconnect design based on distributed RC delay model. In: 30th IEEE Conf. Design Automation (DAC 1993), pp. 606–611. IEEE Press, New York (1993)Google Scholar
  5. 5.
    Das, A., Fleszar, K., Kobourov, S.G., Spoerhase, J., Veeramoni, S., Wolff, A.: Approximating the generalized minimum Manhattan network problem. Arxiv report (2012), http://arxiv.org/abs/1203.6481
  6. 6.
    Das, A., Gansner, E.R., Kaufmann, M., Kobourov, S., Spoerhase, J., Wolff, A.: Approximating minimum Manhattan networks in higher dimensions. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 49–60. Springer, Heidelberg (2011), to appear in Algorithmica, http://dx.doi.org/10.1007/s00453-013-9778-z CrossRefGoogle Scholar
  7. 7.
    Gudmundsson, J., Klein, O., Knauer, C., Smid, M.: Small Manhattan networks and algorithmic applications for the Earth Mover’s Distance. In: 23rd Europ. Workshop Comput. Geom (EuroCG 2007), Graz, Austria, pp. 174–177 (2007)Google Scholar
  8. 8.
    Gudmundsson, J., Levcopoulos, C., Narasimhan, G.: Approximating a minimum Manhattan network. Nordic J. Comput. 8, 219–232 (2001)MathSciNetMATHGoogle Scholar
  9. 9.
    Gudmundsson, J., Narasimhan, G., Smid, M.: Applications of geometric spanner networks. In: Kao, M.Y. (ed.) Encyclopedia of Algorithms, pp. 1–99. Springer (2008)Google Scholar
  10. 10.
    Guo, Z., Sun, H., Zhu, H.: Greedy construction of 2-approximate minimum Manhattan networks. Int. J. Comput. Geom. Appl. 21(3), 331–350 (2011)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Knauer, C., Spillner, A.: A fixed-parameter algorithm for the minimum Manhattan network problem. J. Comput. Geom. 2(1), 189–204 (2011)MathSciNetGoogle Scholar
  12. 12.
    Lu, B., Ruan, L.: Polynomial time approximation scheme for the rectilinear Steiner arborescence problem. J. Comb. Optim. 4(3), 357–363 (2000)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Muñoz, X., Seibert, S., Unger, W.: The minimal Manhattan network problem in three dimensions. In: Das, S., Uehara, R. (eds.) WALCOM 2009. LNCS, vol. 5431, pp. 369–380. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University Press (2007)Google Scholar
  15. 15.
    Nastansky, L., Selkow, S.M., Stewart, N.F.: Cost-minimal trees in directed acyclic graphs. Zeitschrift Oper. Res. 18(1), 59–67 (1974)MathSciNetMATHGoogle Scholar
  16. 16.
    Nouioua, K.: Enveloppes de Pareto et Réseaux de Manhattan: Caractérisations et Algorithmes. PhD thesis, Université de la Méditerranée (2005), http://www.lif-sud.univ-mrs.fr/~karim/download/THESE_NOUIOUA.pdf
  17. 17.
    Rao, S., Sadayappan, P., Hwang, F., Shor, P.: The rectilinear Steiner arborescence problem. Algorithmica 7, 277–288 (1992)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Shi, W., Su, C.: The rectilinear Steiner arborescence problem is NP-complete. SIAM J. Comput. 35(3), 729–740 (2005)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Zachariasen, M.: On the approximation of the rectilinear Steiner arborescence problem in the plane (2000) (Manuscript), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.4529

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Aparna Das
    • 1
  • Krzysztof Fleszar
    • 2
  • Stephen Kobourov
    • 1
  • Joachim Spoerhase
    • 2
  • Sankar Veeramoni
    • 1
  • Alexander Wolff
    • 2
  1. 1.Department of Computer ScienceUniversity of ArizonaTucsonU.S.A.
  2. 2.Lehrstuhl I, Institut für InformatikUniversität WürzburgGermany

Personalised recommendations