Smoothed Analysis of the 2-Opt Heuristic for the TSP: Polynomial Bounds for Gaussian Noise

  • Bodo Manthey
  • Rianne Veenstra
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8283)

Abstract

The 2-opt heuristic is a very simple local search heuristic for the traveling salesman problem. While it usually converges quickly in practice, its running-time can be exponential in the worst case.

In order to explain the performance of 2-opt, Englert, Röglin, and Vöcking (Algorithmica, to appear) provided a smoothed analysis in the so-called one-step model on d-dimensional Euclidean instances. However, translating their results to the classical model of smoothed analysis, where points are perturbed by Gaussian distributions with standard deviation σ, yields a bound that is only polynomial in n and 1/σd.

We prove bounds that are polynomial in n and 1/σ for the smoothed running-time with Gaussian perturbations. In particular our analysis for Euclidean distances is much simpler than the existing smoothed analysis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arora, S.: Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. Journal of the ACM 45(5), 753–782 (1998)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Arthur, D., Manthey, B., Röglin, H.: Smoothed analysis of the k-means method. Journal of the ACM 58(5) (2011)Google Scholar
  3. 3.
    Arthur, D., Vassilvitskii, S.: Worst-case and smoothed analysis of the ICP algorithm, with an application to the k-means method. SIAM Journal on Computing 39(2), 766–782 (2009)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bringmann, K., Engels, C., Manthey, B., Rao, B.V.R.: Random shortest paths: Non-euclidean instances for metric optimization problems. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 219–230. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Chandra, B., Karloff, H., Tovey, C.: New results on the old k-opt algorithm for the traveling salesman problem. SIAM Journal on Computing 28(6), 1998–2029 (1999)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Engels, C., Manthey, B.: Average-case approximation ratio of the 2-opt algorithm for the TSP. Operations Research Letters 37(2), 83–84 (2009)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Englert, M., Röglin, H., Vöcking, B.: Worst case and probabilistic analysis of the 2-Opt algorithm for the TSP. Algorithmica (to appear)Google Scholar
  8. 8.
    Funke, S., Laue, S., Lotker, Z., Naujoks, R.: Power assignment problems in wireless communication: Covering points by disks, reaching few receivers quickly, and energy-efficient travelling salesman tours. Ad Hoc Networks 9(6), 1028–1035 (2011)CrossRefGoogle Scholar
  9. 9.
    Johnson, D.S., McGeoch, L.A.: The traveling salesman problem: A case study. In: Aarts, E., Lenstra, J.K. (eds.) Local Search in Combinatorial Optimization, ch. 8. John Wiley & Sons (1997)Google Scholar
  10. 10.
    Johnson, D.S., McGeoch, L.A.: Experimental analysis of heuristics for the STSP. In: Gutin, G., Punnen, A.P. (eds.) The Traveling Salesman Problem and its Variations, ch. 9. Kluwer Academic Publishers (2002)Google Scholar
  11. 11.
    Kern, W.: A probabilistic analysis of the switching algorithm for the TSP. Mathematical Programming 44(2), 213–219 (1989)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Manthey, B., Röglin, H.: Smoothed analysis: Analysis of algorithms beyond worst case. it – Information Technology 53(6), 280–286 (2011)CrossRefGoogle Scholar
  13. 13.
    Manthey, B., Röglin, H.: Worst-case and smoothed analysis of k-means clustering with Bregman divergences. Journal of Computational Geometry 4(1), 94–132 (2013)MathSciNetGoogle Scholar
  14. 14.
    Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approximation scheme for geometric tsp, k-mst, and related problems. SIAM Journal on Computing 28(4), 1298–1309 (1999)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    van Nijnatten, F., Sitters, R., Woeginger, G.J., Wolff, A., de Berg, M.: The traveling salesman problem under squared Euclidean distances. In: Proc. of the 27th Int. Symp. on Theoretical Aspects of Computer Science (STACS). LIPIcs, vol. 5, pp. 239–250. Schloss Dagstuhl (2010)Google Scholar
  16. 16.
    Papadimitriou, C.H.: The Euclidean traveling salesman problem is NP-complete. Theoretical Computer Science 4(3), 237–244 (1977)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Spielman, D.A., Teng, S.H.: Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time. Journal of the ACM 51(3), 385–463 (2004)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Spielman, D.A., Teng, S.H.: Smoothed analysis: An attempt to explain the behavior of algorithms in practice. Communications of the ACM 52(10), 76–84 (2009)CrossRefGoogle Scholar
  19. 19.
    Yukich, J.E.: Probability Theory of Classical Euclidean Optimization Problems. Lecture Notes in Mathematics, vol. 1675. Springer (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Bodo Manthey
    • 1
  • Rianne Veenstra
    • 1
  1. 1.Department of Applied MathematicsUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations