Asynchronous Rumor Spreading on Random Graphs

  • Konstantinos Panagiotou
  • Leo Speidel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8283)


We perform a thorough study of various characteristics of the asynchronous push-pull protocol for spreading a rumor on Erdős-Rényi random graphs G n,p , for any p > cln (n)/n, c > 1. In particular, we prove tight bounds for the total time that is needed until the information has spread to all nodes. Moreover, we quantify precisely the robustness of the protocol with respect to transmission and node failures.


Poisson Process Random Graph Node Failure Tight Bound Faulty Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aigner, M., Ziegler, G.: Proofs from THE BOOK. Springer (2010)Google Scholar
  2. 2.
    Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Boyd, S., Arpita, G., Balaji, P., Devavrat, S.: Gossip algorithms: Design, analysis and applications. In: 24th INFOCOM, pp. 1653–1664. IEEE (2005)Google Scholar
  4. 4.
    Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Randomized gossip algorithms. IEEE Transactions on Information Theory 52(6), 2508–2530 (2006)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chierichetti, F., Lattanzi, S., Panconesi, A.: Almost tight bounds for rumour spreading with conductance. In: 42nd ACM Symposium on Theory of Computing (STOC 2010), pp. 399–408 (2010)Google Scholar
  6. 6.
    Chierichetti, F., Lattanzi, S., Panconesi, A.: Rumour spreading and graph conductance. In: ACM-SIAM Symposium on Discrete Algorithms (SODA 2010), pp. 1657–1663 (2010)Google Scholar
  7. 7.
    Chung, F., Lu, L.: The average distance in a random graph with given expected degrees. Internet Mathematics 1(1), 91–114 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cooper, C., Frieze, A.: The cover time of sparse random graphs. Random Structures and Algorithms 30(1-2), 1–16 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H., Swinehart, D., Terry, D.: Epidemic algorithms for replicated database maintenance. In: Proceedings of the Sixth Annual ACM Symposium on Principles of Distributed Computing (POCD 1987), pp. 1–12 (1987)Google Scholar
  10. 10.
    Doerr, B., Fouz, M., Friedrich, T.: Social networks spread rumors in sublogarithmic time. In: 43rd ACM Symposium on Theory of Computing, pp. 21–30 (2011)Google Scholar
  11. 11.
    Doerr, B., Fouz, M., Friedrich, T.: Asynchronous rumor spreading in preferential attachment graphs. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 307–315. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Fountoulakis, N., Huber, A., Panagiotou, K.: Reliable broadcasting in random networks and the effect of density. In: 29th Conference on Computer Communications (IEEE INFOCOM 2010), pp. 2552–2560 (2010)Google Scholar
  13. 13.
    Fountoulakis, N., Panagiotou, K., Sauerwald, T.: Ultra-fast rumor spreading in social networks. In: Proceedings of the 23rd ACM-SIAM Symposium on Discrete Algorithms (SODA 2012), pp. 1642–1660 (2012)Google Scholar
  14. 14.
    Frieze, A.M., Grimmett, G.R.: The shortest-path problem for graphs with random arc-lengths. Discrete Applied Mathematics 10(1), 57–77 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Giakkoupis, G.: Tight bounds for rumor spreading in graphs of a given conductance. In: 28th International Symposium on Theoretical Aspects of Computer Science (STACS), pp. 57–68 (2011)Google Scholar
  16. 16.
    Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.M., van Steen, M.: Gossip-based peer sampling. ACM Transactions on Computer Systems 25(3) (2007)Google Scholar
  17. 17.
    Karp, R., Schindelhauer, C., Shenker, S., Vöcking, B.: Randomized rumor spreading. In: 41st Annual Symposium on Foundations of Computer Science (FOCS 2000), pp. 565–574 (2000)Google Scholar
  18. 18.
    Klenke, A.: Probability theory: a comprehensive course. Springer (2008)Google Scholar
  19. 19.
    Massart, P.: Concentration Inequalities and Model Selection. Springer (2003)Google Scholar
  20. 20.
    Panagiotou, K., Pérez-Giménez, X., Sauerwald, T., Sun, H.: Randomized rumor spreading: the effect of the network topology (submitted)Google Scholar
  21. 21.
    Pittel, B.: On spreading a rumor. SIAM Journal on Applied Mathematics 47(1), 213–223 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Van Renesse, R., Minsky, Y., Hayden, M.: A gossip-style failure detection service. In: Middleware, pp. 55–70 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Konstantinos Panagiotou
    • 1
  • Leo Speidel
    • 1
  1. 1.Mathematics InstituteUniversity of MunichMunichGermany

Personalised recommendations