Advertisement

On the Edge Crossing Properties of Euclidean Minimum Weight Laman Graphs

  • Sergey Bereg
  • Seok-Hee Hong
  • Naoki Katoh
  • Sheung-Hung Poon
  • Shin-ichi Tanigawa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8283)

Abstract

This paper is concerned with the crossing number of Euclidean minimum-weight Laman graphs in the plane. We first investigate the relation between the Euclidean minimum-weight Laman graph and proximity graphs, and then we show that the Euclidean minimum-weight Laman graph is quasi-planar and 6-planar. Thus the crossing number of the Euclidean minimum-weight Laman graph is linear in the number of points.

Keywords

Delaunay Triangulation Supporting Line Sparse Graph Longe Edge Interpoint Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, P.K., Aronov, B., Pach, J., Pollack, R., Sharir, M.: Quasi-planar graphs have a linear number of edges. Combinatorica 17(1), 1–9 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ábrego, B.M., Fabila-Monroy, R., Fernández-Merchant, S., Flores-Peñaloza, D., Hurtado, F., Sacristán, V., Saumell, M.: On crossing numbers of geometric proximity graphs. Computational Geometry: Theory and Applications 44(4), 216–233 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bose, P., Collette, S., Hurtado, F., Korman, M., Langerman, S., Sacristan, V., Saumell, M.: Some properties of k-Delaunay and k-gabriel graphs. Computational Geometry: Theory and Applications 46(2), 13–16 (2013)MathSciNetGoogle Scholar
  4. 4.
    Graver, J., Servatius, B., Servatius, H.: Combinatorial Rigidity. Graduate Studies in Mathematics, vol. 2. American Mathematical Society (1993)Google Scholar
  5. 5.
    Laman, G.: On graphs and rigidity of plane skeletal structures. Journal of Engineering Mathematics 4, 331–340 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Lee, A., Streinu, I.: Pebble game algorithms and sparse graphs. Discrete Mathematics 308, 1425–1437 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Oxley, J.: Matroid Theory, 2nd edn. Oxford Graduate Texts in Mathematics, vol. 21. Oxford University Press (2011)Google Scholar
  8. 8.
    Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica 17(3), 427–439 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Preparata, F.P., Shamos, M.I.: Computational Geometry - An Introduction. Springer (1985)Google Scholar
  10. 10.
    Servatius, B.: The geometry of frameworks: rigidity, mechcanism and CAD. In: Gorini, C.A. (ed.) Geometry at Work: A Collection of Papers Showing Applications of Geometry. Cambridge University Press (2000)Google Scholar
  11. 11.
    Thorpe, M.F., Duxbury, P.M. (eds.): Rigidity Theory and Applications. Kluwer Academic/Plenum Publishers, New York (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sergey Bereg
    • 1
  • Seok-Hee Hong
    • 2
  • Naoki Katoh
    • 3
  • Sheung-Hung Poon
    • 4
  • Shin-ichi Tanigawa
    • 5
  1. 1.Department of Computer ScienceUniversity of Texas at DallasUSA
  2. 2.School of Information TechnologiesUniversity of SydneyAustralia
  3. 3.Department of Architecture and Architectural EngineeringKyoto UniversityJapan
  4. 4.Department of Computer Science & Institute of Information Systems and ApplicationsNational Tsing Hua UniversityTaiwan, R.O.C
  5. 5.Research Institute for Mathematical SciencesKyoto UniversityJapan

Personalised recommendations