Augmenting Graphs to Minimize the Diameter

  • Fabrizio Frati
  • Serge Gaspers
  • Joachim Gudmundsson
  • Luke Mathieson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8283)


We study the problem of augmenting a weighted graph by inserting edges of bounded total cost while minimizing the diameter of the augmented graph. Our main result is an FPT 4-approximation algorithm for the problem.


Short Path Approximation Algorithm Unit Cost Cluster Center Minimum Span Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alon, N., Gyárfás, A., Ruszinkó, M.: Decreasing the diameter of bounded degree graphs. Journal of Graph Theory 35, 161–172 (1999)CrossRefGoogle Scholar
  2. 2.
    Bilò, D., Gualà, L., Proietti, G.: Improved approximability and non-approximability results for graph diameter decreasing problems. Theoretical Computer Science 417, 12–22 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chepoi, V., Vaxès, Y.: Augmenting trees to meet biconnectivity and diameter constraints. Algorithmica 33(2), 243–262 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Demaine, E.D., Zadimoghaddam, M.: Minimizing the diameter of a network using shortcut edges. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 420–431. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Dodis, Y., Khanna, S.: Designing networks with bounded pairwise distance. In: Proceedings of the 31st Annual ACM Symposium on Theory of Computing (STOC), pp. 750–759 (1999)Google Scholar
  6. 6.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, New York (1999)CrossRefGoogle Scholar
  7. 7.
    Erdős, P., Rényi, A., Sós, V.T.: On a problem of graph theory. Studia Sci. Math. Hungar. 1, 215–235 (1966)MathSciNetGoogle Scholar
  8. 8.
    Flum, J., Grohe, M.: Parameterized Complexity Theory, Texts in Theoretical Computer Science. An EATCS Series, vol. XIV. Springer, Berlin (2006)Google Scholar
  9. 9.
    Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. Journal of the ACM 34(3), 596–615 (1987)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Fredman, M.L., Willard, D.E.: Trans-dichotomous algorithms for minimum spanning trees and shortest paths. Journal of Computer and System Sciences 48(3), 533–551 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Grigorescu, E.: Decreasing the diameter of cycles. Journal of Graph Theory 43(4), 299–303 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kapoor, S., Sarwat, M.: Bounded-diameter minimum-cost graph problems. Theory of Computing Systems 41(4), 779–794 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Li, C.-L., McCormick, S.T., Simchi-Levi, D.: On the minimum-cardinality-bounded-diameter and the bounded-cardinality-minimum-diameter edge addition problems. Operations Research Letters 11(5), 303–308 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Marx, D.: Parameterized complexity and approximation algorithms. The Computer Journal 51(1), 60–78 (2008)CrossRefGoogle Scholar
  15. 15.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2006)CrossRefzbMATHGoogle Scholar
  16. 16.
    Schoone, A.A., Bodlaender, H.L., van Leeuwen, J.: Diameter increase caused by edge deletion. Journal of Graph Theory 11, 409–427 (1997)CrossRefGoogle Scholar
  17. 17.
    Vazirani, V.V.: Approximation algorithms. Springer (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Fabrizio Frati
    • 1
  • Serge Gaspers
    • 2
    • 3
  • Joachim Gudmundsson
    • 1
    • 3
  • Luke Mathieson
    • 4
  1. 1.University of SydneyAustralia
  2. 2.The University of New South WalesAustralia
  3. 3.NICTAAustralia
  4. 4.Macquarie UniversityAustralia

Personalised recommendations