Performance Guarantees for Scheduling Algorithms under Perturbed Machine Speeds

  • Michael Etscheid
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8283)

Abstract

We study two local search and a greedy algorithm for scheduling. The worst-case performance guarantees are well-known but seem to be contrived and too pessimistic for practical applications. For unrestricted machines, Brunsch et al. [3] showed that the worst-case performance guarantees of these algorithms are not robust if the job sizes are subject to random noise. However, in the case of restricted related machines the worst-case bounds turned out to be robust even in the presence of random noise. We show that if the machine speeds rather than the job sizes are perturbed, also the performance guarantees for restricted machines decrease thus yielding a stronger result.

Keywords

smoothed analysis scheduling performance guarantees 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aspnes, J., Azar, Y., Fiat, A., Plotkin, S., Waarts, O.: On-line routing of virtual circuits with applications to load balancing and machine scheduling. JACM 44(3), 486–504 (1997)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Beier, R., Vöcking, B.: Random knapsack in expected polynomial time. Journal of Computer and System Sciences 69(3), 306–329 (2004)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Brunsch, T., Röglin, H., Rutten, C., Vredeveld, T.: Smoothed Performance Guarantees for Local Search. Mathematical Programming (May 2013)Google Scholar
  4. 4.
    Cho, Y., Sahni, S.: Bounds for list schedules on uniform processors. SIAM Journal on Computing 9, 91–103 (1980)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Czumaj, A., Vöcking, B.: Tight bounds for worst-case equilibria. ACM Transactions on Algorithms 3(1) (2007)Google Scholar
  6. 6.
    Gairing, M., Lücking, T., Mavronicolas, M., Monien, B.: The Price of Anarchy for Restricted Parallel Links. Parallel Processing Letters 16(1), 117–131 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hochbaum, D.S., Shmoys, D.B.: A polynomial approximation scheme for machine scheduling on uniform processors: using the dual approximation approach. SIAM Journal on Computing 17, 539–551 (1988)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Hoeffding, W.: Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association 58(301), 13–30 (1963)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling unrelated parallel machines. Mathematical Programming 46(1-3), 259–271 (1990)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Lu, P., Yu, C.: Worst-Case Nash Equilibria in Restricted Routing. Journal of Computer Science and Technology 27(4), 710–717 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Recalde, D., Rutten, C., Schuurman, P., Vredeveld, T.: Local search performance guarantees for restricted related parallel machine scheduling. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 108–119. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Schuurman, P., Vredeveld, T.: Performance Guarantees of Local Search for Multiprocessor Scheduling. Informs Journal on Computing 19(1), 52–63 (2007)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Spielman, D.A., Teng, S.-H.: Smoothed Analysis of Algorithms: Why The Simplex Algorithm Usually Takes Polynomial Time. JACM 51(3), 385–463 (2004)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Spielman, D.A., Teng, S.-H.: Smoothed Analysis. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 256–270. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michael Etscheid
    • 1
  1. 1.Dept. of Computer ScienceUniversity of BonnGermany

Personalised recommendations