Geodesic-Preserving Polygon Simplification

  • Oswin Aichholzer
  • Thomas Hackl
  • Matias Korman
  • Alexander Pilz
  • Birgit Vogtenhuber
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8283)

Abstract

Polygons are a paramount data structure in computational geometry. While the complexity of many algorithms on simple polygons or polygons with holes depends on the size of the input polygon, the intrinsic complexity of the problems these algorithms solve is often related to the reflex vertices of the polygon. In this paper, we give an easy-to-describe linear-time method to replace an input polygon \(\mathcal{P}\) by a polygon \(\mathcal{P}'\) such that (1) \(\mathcal{P}'\) contains \(\mathcal{P}\), (2) \(\mathcal{P}'\) has its reflex vertices at the same positions as \(\mathcal{P}\), and (3) the number of vertices of \(\mathcal{P}'\) is linear in the number of reflex vertices. Since the solutions of numerous problems on polygons (including shortest paths, geodesic hulls, separating point sets, and Voronoi diagrams) are equivalent for both \(\mathcal{P}\) and \(\mathcal{P}'\), our algorithm can be used as a preprocessing step for several algorithms and makes their running time dependent on the number of reflex vertices rather than on the size of \(\mathcal{P}\).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aichholzer, O., Hackl, T., Korman, M., Pilz, A., Vogtenhuber, B.: Geodesic-preserving polygon simplification. ArXiv e-prints (2013), arXiv:1309.3858Google Scholar
  2. 2.
    Aichholzer, O., Korman, M., Pilz, A., Vogtenhuber, B.: Geodesic order types. Algorithmica (to appear, 2013)Google Scholar
  3. 3.
    Aichholzer, O., Miltzow, T., Pilz, A.: Extreme point and halving edge search in abstract order types. Computational Geometry: Theory and Applications 46(8), 970–978 (2013)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Arkin, E.M., Chiang, Y.-J., Held, M., Mitchell, J.S.B., Sacristan, V., Skiena, S., Yang, T.-H.: On minimum-area hulls. Algorithmica 21(1), 119–136 (1998)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Aronov, B.: On the geodesic Voronoi diagram of point sites in a simple polygon. In: SoCG, pp. 39–49 (1987)Google Scholar
  6. 6.
    Aronov, B., Fortune, S., Wilfong, G.T.: The furthest-site geodesic Voronoi diagram. Discrete and Computational Geometry 9, 217–255 (1993)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bern, M.W., Eppstein, D.: Mesh generation and optimal triangulation. In: Computing in Euclidean Geometry. Lecture Notes Series on Computing, vol. 4, pp. 47–123. World Scientific (1995)Google Scholar
  8. 8.
    Bose, P., Demaine, E.D., Hurtado, F., Iacono, J., Langerman, S., Morin, P.: Geodesic ham-sandwich cuts. In: SoCG, pp. 1–9 (2004)Google Scholar
  9. 9.
    Demaine, E.D., Erickson, J., Hurtado, F., Iacono, J., Langerman, S., Meijer, H., Overmars, M.H., Whitesides, S.: Separating point sets in polygonal environments. International Journal of Computational Geometry and Applications 15(4), 403–420 (2005)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. The Canadian Cartographer 10(2), 112–122 (1973)CrossRefGoogle Scholar
  11. 11.
    Ghosh, S.: Visibility Algorithms in the Plane. Cambridge University Press, New York (2007)CrossRefMATHGoogle Scholar
  12. 12.
    Guibas, L.J., Hershberger, J.: Optimal shortest path queries in a simple polygon. Journal of Computer and System Sciences 39(2), 126–152 (1989)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Guibas, L.J., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.E.: Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorithmica 2, 209–233 (1987)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Guibas, L.J., Hershberger, J., Mitchell, J.S.B., Snoeyink, J.: Approximating polygons and subdivisions with minimum link paths. Journal of Computer and System Sciences 3(4), 383–415 (1993)MathSciNetMATHGoogle Scholar
  15. 15.
    Gupta, H., Wenger, R.: Constructing pairwise disjoint paths with few links. ACM Transactions on Algorithms 3(3) (2007)Google Scholar
  16. 16.
    Hershberger, J., Suri, S.: An optimal algorithm for euclidean shortest paths in the plane. SIAM Journal of Computing 28(6), 2215–2256 (1999)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Hershberger, J., Snoeyink, J.: Computing minimum length paths of a given homotopy class. Computational Geometry: Theory and Applications 4, 63–97 (1994)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Hertel, S., Mehlhorn, K.: Fast triangulation of simple polygons. In: Karpinski, M. (ed.) FCT 1983. LNCS, vol. 158, pp. 207–218. Springer, Heidelberg (1983)Google Scholar
  19. 19.
    Melkman, A.A.: On-line construction of the convex hull of a simple polyline. Information Processing Letters 25(1), 11–12 (1987)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Mitchell, J.S.B.: L 1 shortest paths among polygonal obstacles in the plane. Algorithmica 8, 55–88 (1992)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Mitchell, J.S.B.: Shortest paths and networks. In: Handbook of Discrete and Computational Geometry, 2nd edn., pp. 607–642. Chapman & Hall/CRC (2004)Google Scholar
  22. 22.
    Mitchell, J.S.B., Polishchuk, V., Sysikaski, M.: Minimum-link paths revisited. ArXiv e-prints (2013), arXiv:1302.3091Google Scholar
  23. 23.
    Papadopoulou, E., Lee, D.T.: A new approach for the geodesic Voronoi diagram of points in a simple polygon and other restricted polygonal domains. Algorithmica 20(4), 319–352 (1998)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Rote, G., Santos, F., Streinu, I.: Pseudo-triangulations—a survey. In: Surveys on Discrete and Computational Geometry—Twenty Years Later. Contemporary Mathematics, pp. 343–410 (2008)Google Scholar
  25. 25.
    Speckmann, B., Tóth, C.D.: Allocating vertex π-guards in simple polygons via pseudo-triangulations. Discrete and Computational Geometry 33(2), 345–364 (2005)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Suri, S.: A linear time algorithm for minimum link paths inside a simple polygon. Computer Vision, Graphics, and Image Processing 35(1), 99–110 (1986)CrossRefMATHGoogle Scholar
  27. 27.
    Toussaint, G.T.: Computing geodesic properties inside a simple polygon. Revue D’Intelligence Artificielle 3(2), 9–42 (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Oswin Aichholzer
    • 1
  • Thomas Hackl
    • 1
  • Matias Korman
    • 2
  • Alexander Pilz
    • 1
  • Birgit Vogtenhuber
    • 1
  1. 1.Institute for Software TechnologyGraz University of TechnologyAustria
  2. 2.Dept. Matemàtica Aplicada IIUniversitat Politècnica de CatalunyaSpain

Personalised recommendations