Personalized Quality Prediction for Dynamic Service Management Based on Invocation Patterns

  • Li Zhang
  • Bin Zhang
  • Claus Pahl
  • Lei Xu
  • Zhiliang Zhu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8274)


Recent service management needs, e.g., in the cloud, require services to be managed dynamically. Services might need to be selected or replaced at runtime. For services with similar functionality, one approach is to identify the most suitable services for a user based on an evaluation of the quality (QoS) of these services. In environments like the cloud, further personalisation is also paramount. We propose a personalized QoS prediction method, which considers the impact of the network, server environment and user input. It analyses previous user behaviour and extracts invocation patterns from monitored QoS data through pattern mining to predict QoS based on invocation QoS patterns and user invocation features. Experimental results show that the proposed method can significantly improve the accuracy of the QoS prediction.


Service Quality Web and Cloud Services QoS Prediction Invocation Pattern Mining Collaborative Filtering Personalized Recommendation 


  1. 1.
    Cardoso, J., Sheth, A., Miller, J., Arnold, J., Kochut, K.: Quality of Service for Workflows and Web Service Processes. Journal of Web Semantics 1(3), 281–308 (2004)CrossRefGoogle Scholar
  2. 2.
    Kritikos, K., Plexousakis, D.: Requirements for QoS-based Web service description and discovery. IEEE Transactions on Services Computing 2(4), 320–337 (2009)CrossRefGoogle Scholar
  3. 3.
    Zheng, K., Xiong, H.: Semantic Web service discovery method based on user preference and QoS. In: Intl. Conf. on Consumer Electr., Comms. and Netw. CECNet 2012, pp. 3502–3506 (2012)Google Scholar
  4. 4.
    Ali, R.J.A., Rana, O.F., Walker, D.W.: G-QoSM: Grid service discovery using QoS properties. Computing and Informatics 21(4), 363–382 (2012)Google Scholar
  5. 5.
    Wang, P.: QoS-aware web services selection with intuitionistic fuzzy set under consumer’s vague perception. Expert Systems with Applications 36(3), 4460–4466 (2009)CrossRefGoogle Scholar
  6. 6.
    Huang, A.F.M., Lan, C.W., Yang, S.J.H.: An optimal QoS-based Web service selection scheme. Information Sciences 179(19), 3309–3322 (2009)CrossRefGoogle Scholar
  7. 7.
    Ye, Z., Bouguettaya, A., Zhou, X.: QoS-Aware Cloud Service Composition based on Economic Models. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 111–126. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Alrifai, M., Skoutas, D., Risse, T.: Selecting skyline services for QoS-based web service composition. In: Proc. Intl. Conf. on World Wide Web, pp. 11–20. ACM (2010)Google Scholar
  9. 9.
    Zeng, L., Benatallah, B., Ngu, A.H.H., et al.: QoS-Aware middleware for Web services composition. IEEE Trans. on Software Engineering 30(5), 311–327 (2004)CrossRefGoogle Scholar
  10. 10.
    Yu, T., Lin, K.J.: Service Selection Algorithms for Web Services with End-to-end QoS constraints. Information Systems and E-Business Management 3(2), 103–126 (2005)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Shao, L., Zhang, J., Wei, Y., et al.: Personalized QoS prediction for Web services via collaborative filtering. In: IEEE Intl. Conference on Web Services, ICWS 2007, pp. 439–446 (2007)Google Scholar
  12. 12.
    Zheng, Z., Ma, L.M.R., et al.: Qos-aware web service recommendation by collaborative filtering. IEEE Transactions on Services Computing 4(2), 140–152 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Zheng, Z., Ma, H.: WSRec: A Collaborative Filtering Based Web Service Recommender System. In: Proc IEEE Intl. Conference on Web Services, pp. 437–444 (2009)Google Scholar
  14. 14.
    Wu, G., Wei, J., Qiao, X., et al.: A Bayesian network based QoS assessment model for web services. In: Proc IEEE Intl. Conference on Service Computing, pp. 498–505 (2007)Google Scholar
  15. 15.
    Li, Z., Bin, Z., Ying, L., et al.: A Web Service QoS Prediction Approach Based on Collaborative Filtering. In: IEEE Asia-Pacific Services Computing Conf APSCC 2010, pp. 725–731 (2010)Google Scholar
  16. 16.
    Li, Z., Bin, Z., Jun, N., et al.: An Approach for Web Service QoS prediction based on service using information. In: Intl Conference on Service Sciences, ICSS 2010, pp. 324–328 (2010)Google Scholar
  17. 17.
    Ester, M., Kriegel, H.P., Sander, J., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proc. Intl. Conf. on Knowledge Discovery in Databases and Data Mining (KDD 1996), pp. 226–232. AAAI Press (1996)Google Scholar
  18. 18.
    Lelli, F., Maron, G., Orlando, S.: Client Side Estimation of a Remote Service Execution. In: IEEE International Symposium on Modelling, Analysis, and Simulation of Computer and Telecommunication Systems, MASCOTS (2007)Google Scholar
  19. 19.
    Vu, L.H., Hauswirth, M., Aberer, K.: QoS-based Service Selection and Ranking with Trust and Reputation Management. Computer Science 3760(2005), 466–483 (2005)Google Scholar
  20. 20.
    Yan, L., Minghui, Z., Duanchao, L., et al.: Service selection approach considering the trustworthiness of QoS data. Journal of Software 19(10), 2620–2627 (2008)CrossRefGoogle Scholar
  21. 21.
    Sarwar, B., Karypis, G., Konstan, J., et al.: Item-based collaborative filtering recommendation algorithms. In: Proc 10th Int’l World Wide Web Conf., pp. 285–295. ACM Press (2001)Google Scholar
  22. 22.
    Chun, Z., Chunxiao, X., Lizhu, Z.: A Survey of Personalization Technology. Journal of Software 13(10), 1852–1861 (2002)Google Scholar
  23. 23.
    Hailing, X., Xiao, W., Xiaodong, W., Baoping, Y.: Comparison study of Internet recommendation system. Journal of Software 20(2), 350–362 (2009)CrossRefGoogle Scholar
  24. 24.
    Ailing, D., Yangyong, Z., Bole, S.: A Collaborative Filtering Recommendation Algorithm Based on Item Rating Prediction. Journal of Software 14(9), 1621–1628 (2003)Google Scholar
  25. 25.
    Balke, W.T., Matthias, W.: Towards personalized selection of Web services. In: Proc. Intl. World Wide Web Conf., pp. 20–24. ACM Press, New York (2003)Google Scholar
  26. 26.
    Pahl, C., Xiong, H., Walshe, R.: A Comparison of On-premise to Cloud Migration Approaches. In: Lau, K.-K., Lamersdorf, W., Pimentel, E. (eds.) ESOCC 2013. LNCS, vol. 8135, pp. 212–226. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  27. 27.
    Pahl, C., Xiong, H.: Migration to PaaS Clouds - Migration Process and Architectural Con-cerns. In: IEEE 7th International Symposium on the Maintenance and Evolution of Service-Oriented and Cloud-Based Systems, MESOCA 2013. IEEE (2013)Google Scholar
  28. 28.
    Huang, A.F., Lan, C.W., Yang, S.J.: An optimal QoS-based Web service selection scheme. Information Sciences 179(19), 3309–3322 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Li Zhang
    • 1
    • 2
  • Bin Zhang
    • 1
  • Claus Pahl
    • 2
  • Lei Xu
    • 2
  • Zhiliang Zhu
    • 1
  1. 1.Northeastern UniversityShenyangChina
  2. 2.Dublin City UniversityDublinIreland

Personalised recommendations