Goal Oriented Variability Modeling in Service-Based Business Processes

  • Karthikeyan Ponnalagu
  • Nanjangud C. Narendra
  • Aditya Ghose
  • Neeraj Chiktey
  • Srikanth Tamilselvam
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8274)


In any organization, business processes are designed to adhere to specified business goals. On many occasions, however, in order to accommodate differing usage contexts, multiple variants of the same business process may need to be designed, all of which should adhere to the same goal. For business processes modeled as compositions of services, automated generation of such goal preserving process variants is a challenge. To that end, we present our approach for generating all goal preserving variants of a service-based business process. Our approach leverages our earlier works on semantic annotations of business processes and service variability modeling. Throughout our paper, we illustrate our ideas with a realistic running example, and also present a proof-of-concept prototype.


Business Process SOA service variability modeling goal semantics 


  1. 1.
    Ayora, C., Torres, V., Reichert, M., Weber, B., Pelechano, V.: Towards run-time flexibility for process families: Open issues and research challenges. In: La Rosa, M., Soffer, P. (eds.) BPM 2012 Workshops. LNBIP, vol. 132, pp. 477–488. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Chen, L., Babar, M.A., Ali, N.: Variability management in software product lines: a systematic review. In: Proceedings of the 13th International Software Product Line Conference, pp. 81–90. Carnegie Mellon University (2009)Google Scholar
  3. 3.
    Darimont, R., van Lamsweerde, A.: Formal refinement patterns for goal-driven requirements elaboration. SIGSOFT Software Engineering Notes 21, 179–190 (1996)CrossRefGoogle Scholar
  4. 4.
    Deelstra, S., Sinnema, M., Nijhuis, J., Bosch, J.: Cosvam: A technique for assessing software variability in software product families. In: ICSM, pp. 458–462 (2004)Google Scholar
  5. 5.
    Thomas Erl. Service-oriented Architecture: Concepts, Technology, and Desing. Pearson Education India (2006)Google Scholar
  6. 6.
    Carbonell, J., et al.: Context-based machine translation. In: Proceedings of the 7th Conference of the Association for Machine Translation in the Americas, pp. 19–28 (2006)Google Scholar
  7. 7.
    Ghose, A.K., Koliadis, G.: Auditing business process compliance. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 169–180. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Ghose, A.K., Narendra, N.C., Ponnalagu, K., Panda, A., Gohad, A.: Goal-driven business process derivation. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp. 467–476. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Hallerbach, A., Bauer, T., Reichert, M.: Capturing variability in business process models: the provop approach. J. Softw. Maint. Evol. 22, 519–546 (2010)CrossRefGoogle Scholar
  10. 10.
    Heinrich, B., Bolsinger, M., Bewernik, M.: Automated planning of process models: The construction of exclusive choices. In: ICIS, page Paper 184 (2009)Google Scholar
  11. 11.
    Hinge, K., Ghose, A., Koliadis, G.: Process seer: A tool for semantic effect annotation of business process models. In: Proceedings of the 2009 IEEE International Enterprise Distributed Object Computing Conference, EDOC 2009, pp. 54–63. IEEE Computer Society, Washington, DC (2009)CrossRefGoogle Scholar
  12. 12.
    Hoesch-Klohe, K., Ghose, A.K., Dam, H.K.: Maintaining motivation models (in BMM) in the context of a (WSDL-S) service landscape. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 582–590. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Lu, R., Sadiq, S.W., Governatori, G.: On managing business processes variants. Data Knowl. Eng. 68(7), 642–664 (2009)CrossRefGoogle Scholar
  14. 14.
    Narendra, N.C., Ponnalagu, K.: Towards a variability model for soa-based solutions. In: IEEE SCC, pp. 562–569 (2010)Google Scholar
  15. 15.
    Qasem, M., Prügel-Bennett, A.: Learning the large-scale structure of the max-sat landscape using populations. Trans. Evol. Comp. 14(4), 518–529 (2010)CrossRefGoogle Scholar
  16. 16.
    Reichert, M., Weber, B.: Enabling flexibility in process-aware information systems. Springer (2012)Google Scholar
  17. 17.
    van der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a truly declarative service flow language. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 1–23. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Karthikeyan Ponnalagu
    • 1
    • 3
  • Nanjangud C. Narendra
    • 2
  • Aditya Ghose
    • 3
  • Neeraj Chiktey
    • 1
    • 4
  • Srikanth Tamilselvam
    • 1
  1. 1.IBM Research IndiaBangaloreIndia
  2. 2.IBM India Software LabBangaloreIndia
  3. 3.University of WollongongAustralia
  4. 4.International Institute of Information TechnologyHyderabadIndia

Personalised recommendations