Advertisement

Entity-Centric Search for Enterprise Services

  • Marcus Roy
  • Ingo Weber
  • Boualem Benatallah
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8274)

Abstract

The consumption of APIs, such as Enterprise Services (ESs) in an enterprise Service-Oriented Architecture (eSOA), has largely been a task for experienced developers. With the rapidly growing number of such (Web)APIs, users with little or no experience in a given API face the problem of finding relevant API operations – e.g., mashups developers. However, building an effective search has been a challenge: Information Retrieval (IR) methods struggle with the brevity of text in API descriptions, whereas semantic search technologies require domain ontologies and formal queries. Motivated by the search behavior of users, we propose an iterative keyword search based on entities. The entities are part of a knowledge base, whose content stems from model-driven engineering. We implemented our approach and conducted a user study showing significant improvements in search effectiveness.

Keywords

Ranking Score Service Design Type Preference Naming Convention Ranking Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aleman-Meza, B., Arpinar, I., Nural, M., Sheth, A.: Ranking Documents Semantically Using Ontological Relationships. In: ICSC 2010 (2010)Google Scholar
  2. 2.
    Burton-Jones, A., Storey, V.C., Sugumaran, V., Purao, S.: A Heuristic-Based Methodology for Semantic Augmentation of User Queries on the Web. In: Song, I.-Y., Liddle, S.W., Ling, T.-W., Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813, pp. 476–489. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Brauer, F., Huber, M., Hackenbroich, G., Leser, U., Naumann, F., Barczynski, W.M.: Graph-Based Concept Identification and Disambiguation for Enterprise Search. In: WWW, Raleigh, NC, USA. ACM (2010)Google Scholar
  4. 4.
    Conesa, J., Storey, V.C., Sugumaran, V.: Improving Web-Query Processing Through Semantic Knowledge. DKE 66(1), 18–34 (2008)CrossRefGoogle Scholar
  5. 5.
    Curbera, F., Khalaf, R., Mukhi, N., Tai, S., Weerawarana, S.: The Next Step in Web Services. Commun. ACM 46, 29–34 (2003)CrossRefGoogle Scholar
  6. 6.
    Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R.S., Peng, Y., Reddivari, P., Doshi, V., Sachs, J.: Swoogle: A Search and Metadata Engine for the Semantic Web. In: Conference on Information and Knowledge Management, CIKM 2004 (2004)Google Scholar
  7. 7.
    Dong, X., Halevy, A.: Indexing dataspaces. In: ACM SIGMOD (2007)Google Scholar
  8. 8.
    Fourney, A., Mann, R., Terry, M.A.: Query-feature graphs: bridging user vocabulary and system functionality. In: UIST, pp. 207–216 (2011)Google Scholar
  9. 9.
    Grechanik, M., Fu, C., Xie, Q., McMillan, C., Poshyvanyk, D., Cumby, C.: A Search Engine for Finding Highly Relevant Applications. In: ICSE 2010 (2010)Google Scholar
  10. 10.
    Hoang, H.H., Tjoa, A.M.: The State of the Art of Ontology-based Query Systems: A Comparison of Existing Approaches. In: ICOCI 2006 (2006)Google Scholar
  11. 11.
    Lin, T., Pantel, P., Gamon, M., Kannan, A., Fuxman, A.: Active Objects: Actions for Entity-centric Search. In: WWW 2012 (2012)Google Scholar
  12. 12.
    Manning, C.D., Raghavan, P., Schtze, H.: Introduction to Information Retrieval. Cambridge Univ. Press (2008)Google Scholar
  13. 13.
    Mass, Y., Ramanath, M., Sagiv, Y., Weikum, G.: IQ: The Case for Iterative Querying for Knowledge. In: CIDR, pp. 38–44 (2011)Google Scholar
  14. 14.
    McMillan, C., Grechanik, M., Poshyvanyk, D., Xie, Q., Fu, C.: Portfolio: finding relevant functions and their usage. In: ICSE 2011 (2011)Google Scholar
  15. 15.
    Roy, M.: Facilitating Enterprise Service Management Using Service Design Knowledge. PhD thesis, CSE, UNSW (under review, 2013)Google Scholar
  16. 16.
    Roy, M., Suleiman, B., Schmidt, D., Weber, I., Benatallah, B.: Using SOA Governance Design Methodologies to Augment Enterprise Service Descriptions. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 566–581. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Roy, M., Weber, I., Benatallah, B.: Extending Enterprise Service Design Knowledge Using Clustering. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) Service Oriented Computing. LNCS, vol. 7636, pp. 142–157. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    SAP. Enterprise Services Workplace (August 2012), http://esworkplace.sap.com
  19. 19.
    Spink, A., Wolfram, D., Jansen, M.B.J., Saracevic, T.: Searching the Web: The public and their queries. JASIST 52(3), 226–234 (2001)CrossRefGoogle Scholar
  20. 20.
    Toch, E., Gal, A., Reinhartz-Berger, I., Dori, D.: A Semantic Approach to Approximate Service Retrieval. ACM Trans. Inter. Tech. (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marcus Roy
    • 1
    • 2
    • 3
  • Ingo Weber
    • 2
    • 3
  • Boualem Benatallah
    • 3
  1. 1.SAP ResearchSydneyAustralia
  2. 2.NICTASydneyAustralia
  3. 3.School of Computer Science and EngineeringSydneyAustralia

Personalised recommendations