WT-LDA: User Tagging Augmented LDA for Web Service Clustering

  • Liang Chen
  • Yilun Wang
  • Qi Yu
  • Zibin Zheng
  • Jian Wu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8274)


Clustering Web services that groups together services with similar functionalities helps improve both the accuracy and efficiency of the Web service search engines. An important limitation of existing Web service clustering approaches is that they solely focus on utilizing WSDL (Web Service Description Language) documents. There has been a recent trend of using user-contributed tagging data to improve the performance of service clustering. Nonetheless, these approaches fail to completely leverage the information carried by the tagging data and hence only trivially improve the clustering performance. In this paper, we propose a novel approach that seamlessly integrates tagging data and WSDL documents through augmented Latent Dirichlet Allocation (LDA). We also develop three strategies to preprocess tagging data before being integrated into the LDA framework for clustering. Comprehensive experiments based on real data and the implementation of a Web service search engine demonstrate the effectiveness of the proposed LDA-based service clustering approach.


Latent Dirichlet Allocation Service Discovery Topic Distribution Service Cluster Word Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Al-Masri, E., Mahmoud, Q.H.: Investigating web services on the world wide web. In: International World Wide Web Conference, pp. 795–804 (2008)Google Scholar
  2. 2.
    Bianchini, D., Antonellis, V.D., Pernici, B., Plebani, P.: Ontology-based methodology for e-service discovery. ACM Journal of Information Systems 31(4), 361–380 (2006)CrossRefGoogle Scholar
  3. 3.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. The Journal of Machine Learning Research 3(1), 993–1022 (2003)zbMATHGoogle Scholar
  4. 4.
    Chen, L., Hu, L., Zheng, Z., Wu, J., Yin, J., Li, Y., Deng, S.: WTCluster: Utilizing tags for web services clustering. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp. 204–218. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Chen, L., Zheng, Z., Feng, Y., Wu, J., Lyu, M.R.: WSTRank: Ranking tags to facilitate web service mining. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 574–581. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Dasgupta, S., Bhat, S., Lee, Y.: Taxonomic clustering of web service for efficient discovery. In: Proceedings of International Conference on Information and Knowledge Management, pp. 1617–1620 (2010)Google Scholar
  7. 7.
    Elgazzar, K., Hassan, A.E., Martin, P.: Clustering wsdl documents to bootstrap the discovery of web services. In: International Conference on Web Services, pp. 147–154 (2009)Google Scholar
  8. 8.
    Hao, Y., Junliang, C., Xiangwu, M., Bingyu, Q.: Dynamically traveling web service clustering based on spatial and temporal aspects. In: Hainaut, J.-L., et al. (eds.) ER Workshops 2007. LNCS, vol. 4802, pp. 348–357. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Church, K., Gale, W.: Inverse document frequency (idf): a measure of deviations from poisson. In: Proceedings of the ACL 3rd Workshop on Very Large Corpora, pp. 121–130 (1995)Google Scholar
  10. 10.
    Platzer, C., Rosenberg, F., Dustdar, S.: Web service clustering using multidimensional angles as proximity measures. ACM Transactions on Internet Technology 9(3), 1–26 (2009)CrossRefGoogle Scholar
  11. 11.
    Pop, C.B., Chifu, V.R., Salomie, I., Dinsoreanu, M., David, T., Acretoaie, V.: Semantic web service clustering for efficient discovery using an ant-based method. In: Essaaidi, M., Malgeri, M., Badica, C. (eds.) Intelligent Distributed Computing IV. SCI, vol. 315, pp. 23–33. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)Google Scholar
  13. 13.
    Rosen-Zvi, M., Griffiths, T., Steyvers, M., Smyth, P.: The author-topic model for authors and documents. In: Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, pp. 487–494 (2004)Google Scholar
  14. 14.
    Sigurbjrnsson, B., van Zwol, R.: Flickr tag recommendation based on collective knowledge. In: Proceedings of the 17th International Conference on World Wide Web, pp. 327–336 (2008)Google Scholar
  15. 15.
    Sun, P., Jiang, C.: Using service clustering to facilitate process-oriented semantic web service discovery. Chinese Journal of Computers 31(8), 1340–1353 (2008)Google Scholar
  16. 16.
    Liu, W., Wong, W.: Discovering homogenous service communities through web service clustering. In: Kowalczyk, R., Huhns, M.N., Klusch, M., Maamar, Z., Vo, Q.B. (eds.) SOCASE 2008. LNCS, vol. 5006, pp. 69–82. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Wu, J., Chen, L., Xie, Y., Zheng, Z.: Titan: A system for effective web service discovery. In: 21st International World Wide Web Conference, pp. 441–444 (2012)Google Scholar
  18. 18.
    Wu, J., Chen, L., Zheng, Z., Lyu, M.R., Wu, Z.: Clustering web services to facilitate service discovery. International Journal of Knowledge and Information Systems (2012) (to appear)Google Scholar
  19. 19.
    Yu, Q.: Place semantics into context: Service community discovery from the WSDL corpus. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp. 188–203. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Yu, Q., Rege, M.: On service community learning: A co-clustering approach. In: Internatonal Conference on Web Services, pp. 283–290 (2010)Google Scholar
  21. 21.
    Zheng, Z., Ma, H., Lyu, M.R., King, I.: QoS-aware Web service recommendation by collaborative filtering. IEEE Transactions on Service Computing 4(2), 140–152 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Liang Chen
    • 1
  • Yilun Wang
    • 1
  • Qi Yu
    • 2
  • Zibin Zheng
    • 3
  • Jian Wu
    • 1
  1. 1.Zhejiang UniversityChina
  2. 2.Rochester Institute of TechnologyUSA
  3. 3.The Chinese University of Hong KongHong Kong

Personalised recommendations