R2-EMOA: Focused Multiobjective Search Using R2-Indicator-Based Selection

  • Heike TrautmannEmail author
  • Tobias Wagner
  • Dimo Brockhoff
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7997)


An indicator-based evolutionary multiobjective optimization algorithm (EMOA) is introduced which incorporates the contribution to the unary R2-indicator as the secondary selection criterion. First experiments indicate that the R2-EMOA accurately approximates the Pareto front of the considered continuous multiobjective optimization problems. Furthermore, decision makers’ preferences can be included by adjusting the weight vector distributions of the indicator which results in a focused search behavior.


Multiobjective optimization Performance assessment  EMOA R2-indicator Indicator-based selection Preferences 



This paper is based on investigations of the project D5 “Synthesis and multi-objective model-based optimization of process chains for manufacturing parts with functionally graded properties” as part of the collaborative research center SFB/TR TRR 30 and the project B4 = C4 of the Collaborative Research Center SFB 823, which are kindly supported by the Deutsche Forschungsgemeinschaft (DFG). In addition, the authors acknowledge support by the French national research agency (ANR) within the Modèles Numérique project “NumBBO - Analysis, Improvement and Evaluation of Numerical Blackbox Optimizers” (ANR-12-MONU-0009-03).


  1. 1.
    Branke, J., Deb, K., Dierolf, H., Osswald, M.: Finding knees in multi-objective optimization. In: Yao, X., Burke, E.K., Lozano, J., Smith, J., Merelo-Guervós, J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 722–731. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Bringmann, K., Friedrich, T.: Convergence of hypervolume-based archiving algorithms I: effectiveness. In: Genetic and Evolutionary Computation Conference (GECCO 2011), pp. 745–752. ACM, New York (2011)Google Scholar
  3. 3.
    Brockhoff, D., Trautmann, H., Wagner, T.: On the properties of the R2 indicator. In: Genetic and Evolutionary Computation Conference (GECCO 2012), pp. 465–472. ACM, New York (2012)Google Scholar
  4. 4.
    Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Congress on Evolutionary Computation (CEC 2002), pp. 825–830. IEEE Press, New Jersey (2002)Google Scholar
  5. 5.
    Hansen, M.P., Jaszkiewicz, A.: Evaluating the quality of approximations of the non-dominated set. Technical report, Institute of Mathematical Modeling, Technical University of Denmark (1998), IMM Technical Report IMM-REP-1998-7Google Scholar
  6. 6.
    Wagner, T., Trautmann, H., Brockhoff, D.: Preference articulation by means of the R2 indicator. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) EMO 2013. LNCS, vol. 7811, pp. 81–95. Springer, Heidelberg (2013)Google Scholar
  7. 7.
    Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)CrossRefGoogle Scholar
  8. 8.
    Zitzler, E., Knowles, J.D., Thiele, L.: Quality assessment of Pareto set approximations. In: Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.) Multiobjective Optimization. LNCS, vol. 5252, pp. 373–404. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms - a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998)Google Scholar
  10. 10.
    Zitzler, E., Thiele, L., Bader, J.: On set-based multiobjective optimization. IEEE Trans. Evol. Comput. 14(1), 58–79 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Heike Trautmann
    • 1
    Email author
  • Tobias Wagner
    • 2
  • Dimo Brockhoff
    • 3
  1. 1.Department of Information SystemsUniversity of MünsterMünsterGermany
  2. 2.Institute of Machining TechnologyTU Dortmund UniversityDortmundGermany
  3. 3.INRIA Lille Nord-EuropeDolphin TeamVilleneuve d’AscqFrance

Personalised recommendations