Advertisement

Using Racing to Automatically Configure Algorithms for Scaling Performance

  • James Styles
  • Holger H. Hoos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7997)

Abstract

Automated algorithm configuration has been proven to be an effective approach for achieving improved performance of solvers for many computationally hard problems. Following our previous work, we consider the challenging situation where the kind of problem instances for which we desire optimised performance are too difficult to be used during the configuration process. In this work, we propose a novel combination of racing techniques with existing algorithm configurators to meet this challenge. We demonstrate that the resulting algorithm configuration protocol achieves better results than previous approaches and in many cases closely matches the bound on performance obtained using an oracle selector. An extended version of this paper can be found at www.cs.ubc.ca/labs/beta/Projects/Config4Scaling.

References

  1. 1.
    Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring metaheuristics. In: GECCO ’02: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 11–18 (2002)Google Scholar
  2. 2.
    Gomes, C.P., van Hoeve, W.-J., Sabharwal, A.: Connections in networks: A hybrid approach. In: Perron, L., Trick, M. (eds.) CPAIOR 2008. LNCS, vol. 5015, pp. 303–307. Springer, Heidelberg (2008)Google Scholar
  3. 3.
    Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman heuristic. EJOR 126, 106–130 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello Coello, C.A. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011)Google Scholar
  5. 5.
    Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: An automatic algorithm configuration framework. J. Artif. Intell. Res. 36, 267–306 (2009)zbMATHGoogle Scholar
  6. 6.
    Reinelt, G.: TSPLIB. http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95. Version visited in October 2011
  7. 7.
    Styles, J., Hoos, H.H., Müller, M.: Automatically configuring algorithms for scaling performance. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, vol. 7219, pp. 205–219. Springer, Heidelberg (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.University of British ColumbiaVancouverCanada

Personalised recommendations