Algorithmic Simplicity and Relevance

  • Jean-Louis Dessalles
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7070)


The human mind is known to be sensitive to complexity. For instance, the visual system reconstructs hidden parts of objects following a principle of maximum simplicity. We suggest here that higher cognitive processes, such as the selection of relevant situations, are sensitive to variations of complexity. Situations are relevant to human beings when they appear simpler to describe than to generate. This definition offers a predictive (i.e. falsifiable) model for the selection of situations worth reporting (interestingness) and for what individuals consider an appropriate move in conversation.


Simplicity relevance interestingness unexpectedness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Solomonoff, R.J.: A Formal Theory of Inductive Inference. Information and Control 7(1), 1–22 (1964), MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Chater, N.: The search for simplicity: A fundamental cognitive principle? The Quaterly J. of Exp. Psychol. 52 (A), 273–302 (1999)Google Scholar
  3. 3.
    Chater, N., Vitányi, P.: Simplicity: a unifying principle in cognitive science? Trends in cogn. Sc. 7(1), 19–22 (2003)CrossRefGoogle Scholar
  4. 4.
    Feldman, J.: How surprising is a simple pattern? Quantifying ‘Eureka!’. Cognition 93, 199–224 (2004)CrossRefGoogle Scholar
  5. 5.
    Dessalles, J.-L.: Coincidences and the encounter problem: A formal account. In: Love, B.C., McRae, K., Sloutsky, V.M. (eds.) Pr. of the 30th Annual Conf. of the Cognitive Science Society, pp. 2134–2139. Cognitive Science Society, Austin (2008), Google Scholar
  6. 6.
    Kahneman, D., Tversky, A.: Subjective probability: A judgement of representativeness. Cogn. Psychol. 3, 430–454 (1972)CrossRefGoogle Scholar
  7. 7.
    Dessalles, J.-L. (2008), La pertinence et ses origines cognitives - Nouvelles théories. Hermes-Science Publications, Paris,
  8. 8.
    Li, M., Vitányi, P.: An introduction to Kolmogorov complexity and its applications, 3rd edn. Springer, New York (1997)CrossRefzbMATHGoogle Scholar
  9. 9.
    Schmidhuber, J.: Simple Algorithmic Theory of Subjective Beauty, Novelty, Surprise, Interestingness, Attention, Curiosity, Creativity, Art, Science, Music, Jokes. Journal of SICE 48(1), 21–32 (2009), Google Scholar
  10. 10.
    Dowe, D.L.: Foreword re C. S. Wallace. The Computer Journal 51(5), 523–560 (2008)CrossRefGoogle Scholar
  11. 11.
    Dowe, D.L.: MML, hybrid Bayesian network graphical models, statistical consistency, invariance and uniqueness. In: Bandyopadhyay, P.S., Forster, M.R. (eds.) Handbook of the Philosophy of Science. Philosophy of Statistics, vol. 7, pp. 901–982. Elsevier, Amsterdam (2011)Google Scholar
  12. 12.
  13. 13.
    Polanyi, L.: So What’s the point? Semiotica 25(3), 207–241 (1979)Google Scholar
  14. 14.
    Sperber, D., Wilson, D.: Relevance: Communication and cognition. Blackwell, ed., Oxford (1986,1995)Google Scholar
  15. 15.
    Grice, H.P.: Logic and conversation. In: Cole, P., Morgan, J.L. (eds.) Syntax and Semantics. Speech acts, vol. III, pp. 41–58. Academic Press, New York (1975)Google Scholar
  16. 16.
    Schmidhuber, J.: What’s interesting? Lugano, CH: Technical Report IDSIA-35-97 (1997),
  17. 17.
    Norrick, N.R.: Conversational narrative: storytelling in everyday talk. J. Benjamins Publ. Comp., Amsterdam (2000)Google Scholar
  18. 18.
    Kahneman, D., Miller, D.T.: Norm theory: Comparing reality to its alternatives. Psychol. Rev. 93(2), 136–153 (1986)CrossRefGoogle Scholar
  19. 19.
    Chaitin, G.J.: On the intelligibility of the universe and the notions of simplicity, complexity and irreducibility. In: Hogrebe, Bromand (eds.) Grenzen und Grenzüberschreitungen, vol. XIX, pp. 517–534. Akademie Verlag, Berlin (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jean-Louis Dessalles
    • 1
  1. 1.Telecom ParisTechParisFrance

Personalised recommendations