Advertisement

Embedding Preference Ordering for Symmetric DCOP Solvers on Spanning Trees

  • Toshihiro Matsui
  • Marius Silaghi
  • Katsutoshi Hirayama
  • Makoto Yokoo
  • Hiroshi Matsuo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8291)

Abstract

The Max-Sum algorithm is a solution method for the Distributed Constraint Optimization Problem (DCOP) which is a fundamental problem in multiagent cooperation. Particularly, we focus on the case of Max-Sum on a spanning tree, where the algorithm is an exact solution method. In this case, all agents simultaneously compute globally optimal objective values as erootf nodes of the tree that represents the problem. On the other hand, a tiebreak is generally necessary in order to determine a unique optimal solution among the agents. While top-down post-processing is a well-known solution, one can prefer to design the solver as a bottom-up computation that is simply integrated to pre-processing. To address this issue, we investigate a technique that employs a preference ordering based on spanning trees for the optimization algorithms. With this technique, top-down processing to choose a unique optimal solution can be embedded into bottom-up optimization via small weight values for the preference ordering. We also evaluate an integrated algorithm that maintains both tree structures and quasi-optimal solutions using the bottom-up approaches.

Keywords

Distributed Constraint Optimization multi-agent cooperation tiebreak 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aji, S.M., McEliece, R.J.: The generalized distributive law. IEEE Transactions on Information Theory 46(2), 325–343 (2000)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Blin, L., Dolev, S., Potop-Butucaru, M.G., Rovedakis, S.: Fast self-stabilizing minimum spanning tree construction - using compact nearest common ancestor labeling scheme. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 480–494. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Farinelli, A., Rogers, A., Petcu, A., Jennings, N.R.: Decentralised coordination of low-power embedded devices using the max-sum algorithm. In: AAMAS 2008, pp. 639–646 (2008)Google Scholar
  4. 4.
    Gallager, R.G., Humblet, P.A., Spira, P.M.: A distributed algorithm for minimum-weight spanning trees. ACM Trans. Program. Lang. Syst. 5(1), 66–77 (1983)CrossRefMATHGoogle Scholar
  5. 5.
    Macarthur, K., Farinelli, A., Ramchurn, S., Jennings, N.: Efficient, superstabilizing decentralised optimisation for dynamic task allocation environments. In: OPTMAS 2010, pp. 25–32 (2010)Google Scholar
  6. 6.
    Maheswaran, R.T., Tambe, M., Bowring, E., Pearce, J.P., Varakantham, P.: Taking dcop to the real world: Efficient complete solutions for distributed multi-event scheduling. In: AAMAS 2004, pp. 310–317 (2004)Google Scholar
  7. 7.
    Mailler, R., Lesser, V.: Solving distributed constraint optimization problems using cooperative mediation. In: AAMAS 2004, pp. 438–445 (2004)Google Scholar
  8. 8.
    Miller, S., Ramchurn, S.D., Rogers, A.: Optimal decentralised dispatch of embedded generation in the smart grid. In: 11th International Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 281–288 (2012)Google Scholar
  9. 9.
    Modi, P.J., Shen, W., Tambe, M., Yokoo, M.: Adopt: Asynchronous distributed constraint optimization with quality guarantees. Artificial Intelligence 161(1-2), 149–180 (2005)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Petcu, A., Faltings, B.: A scalable method for multiagent constraint optimization. In: IJCAI 2005, pp. 266–271 (2005)Google Scholar
  11. 11.
    Rogers, A., Farinelli, A., Stranders, R., Jennings, N.R.: Bounded approximate decentralised coordination via the Max-Sum algorithm. Artificial Intelligence 175(2), 730–759 (2011)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Vinyals, M., Rodriguez-Aguilar, J.A., Cerquides, J.: Constructing a unifying theory of dynamic programming dcop algorithms via the generalized distributive law. Autonomous Agents and Multi-Agent Systems 22(3), 439–464 (2011)CrossRefGoogle Scholar
  13. 13.
    Zhang, W., Wang, G., Xing, Z., Wittenburg, L.: Distributed stochastic search and distributed breakout: properties, comparison and applications to constraint optimization problems in sensor networks. Artificial Intelligence 161(1-2), 55–87 (2005)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Toshihiro Matsui
    • 1
  • Marius Silaghi
    • 2
  • Katsutoshi Hirayama
    • 3
  • Makoto Yokoo
    • 4
  • Hiroshi Matsuo
    • 1
  1. 1.Nagoya Institute of TechnologyNagoyaJapan
  2. 2.Florida Institute of TechnologyMelbourneUnited States of America
  3. 3.Kobe UniversityKobeJapan
  4. 4.Kyushu UniversityFukuokaJapan

Personalised recommendations