A Human-Inspired Collision Avoidance Method for Multi-robot and Mobile Autonomous Robots

  • Fan Liu
  • Ajit Narayanan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8291)


In this paper a novel and dynamic rectangular roundabout (‘rectabout’) collision avoidance method based on human behaviour is presented for multiple, homogeneous, autonomous and mobile robots. The approach does not depend on priority schemes and instead involves only local views. There is therefore no need for inter-robot communication. The decentralized collision avoidance maneuver employs a virtual rectabout that allows each robot to re-plan its path. This maneuver is calculated independently by each robot involved in the possible collision. The virtual rectabout lies in the intersecting and conflicting position of two robot routes. Experimental simulations involving multi-robot systems indicate that virtual rectabouts ensure that all robots remain free of collision while attempting to follow their goal direction. Comparisons with a centralized collision detection and avoidance approach demonstrate no additional move costs. However, the advantages of rectabouts are that no inter-robot communication or centralized coordination is required, thereby cutting down significantly on communication and coordination overheads.


Rectangular Roundabout Decentralized Collision Avoidance Minimum Enclosing Rectangle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Das, S., Goswami, P.P., Nandy, S.C.: Smallest k-point enclosing rectangle and square of arbitrary orientation. Information Processing Letters 94(6), 259–266 (2005)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Aggarwal, A., Imai, H., Katoh, N., Suri, S.: Finding k points with minimum diameter and related problems. Journal of Algorithms 12(1), 38–56 (1991)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Eppstein, D., Erickson, J.: Iterated nearest neighbors and finding minimal polytopes. Discrete & Computational Geometry 11(1), 321–350 (1994)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Segal, M., Kedem, K.: Enclosing k points in the smallest axis parallel rectangle. Information Processing Letters 65(2), 95–99 (1998)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Mahapatra, P.R.S., Karmakar, A., Das, S., Goswami, P.P.: k-enclosing axis-parallel square. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011, Part III. LNCS, vol. 6784, pp. 84–93. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Pang, S., Liu, F., Kadobayashi, Y., Ban, T., Inoue, D.: Training minimum enclosing balls for cross tasks knowledge transfer. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP 2012, Part I. LNCS, vol. 7663, pp. 375–382. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Drezner, Z., Hamacher, H.W.: Facility Location: Applications and Theory. Springer, Berlin (2002)CrossRefGoogle Scholar
  8. 8.
    Nandy, S.C., Bhattacharya, B.B.: A unified algorithm for finding maximum and minimum object enclosing rectangles and cuboids. Computers & Mathematics with Applications 29(8), 45–61 (1995)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    De, M., Maheshwari, A., Nandy, S.C., Smid, M.H.M.: An in-place min-max priority search tree. Computational Geometry 46(3), 310–327 (2013)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Liu, F., Narayanan, A.: Roundabout collision avoidance for multiple robots based on minimum enclosing rectangle (demonstration). In: AAMAS, pp. 1375–1376 (May 2013)Google Scholar
  11. 11.
    Olivier, A.H., Marin, A., Grétual, A., Pettré, J.: Minimal predicted distance: A common metric for collision avoidance during pairwise interactions between walkers. Gait & Posture 36(3), 399–404 (2012)CrossRefGoogle Scholar
  12. 12.
    Olivier, A.H., Marin, A., Grétual, A., Pettré, J.: Minimal predicted distance: A kinematic cue to investigate collision avoidance between walkers. Computer Methods in Biomechanics and Biomedical Engineering 15(1), 240–242 (2012)CrossRefGoogle Scholar
  13. 13.
    Liu, F., Narayanan, A., Bai, Q.: Effective methods for generating collision free paths for multiple robots based on collision type (demonstration). In: AAMAS, pp. 1459–1460 (June 2012)Google Scholar
  14. 14.
    Wikipedia: Autonomous car (May 2013)Google Scholar
  15. 15.
    Spectrum, I.: How google’s self-driving car works (October 2011)Google Scholar
  16. 16.
    Bennewitz, M., Burgard, W., Thrun, S.: Finding and optimizing solvable priority schemes for decoupled path planning techniques for teams of mobile robots. Robotics and Autonomous Systems 41(2-3), 89–99 (2002)CrossRefGoogle Scholar
  17. 17.
    van den Berg, J., Snoeyink, J., Lin, M., Manocha, D.: Centralized path planning for multiple robots: Optimal decoupling into sequential plans. In: RSS (July 2009)Google Scholar
  18. 18.
    Sharon, G., Stern, R., Felner, A., Sturtevant, N.: Conflict-based search for optimal multi-agent path finding. In: AAAI, pp. 563–569 (June 2012)Google Scholar
  19. 19.
    Lalish, E., Morgansen, K.A.: Distributed reactive collision avoidance. Autonomous Robots 32(3), 207–226 (2012)CrossRefGoogle Scholar
  20. 20.
    Škrjanc, I., Klančar, G.: Optimal cooperative collision avoidance between multiple robots based on bernstein-bézier curves. Robotics and Autonomous Systems 58(1), 1–9 (2010)CrossRefGoogle Scholar
  21. 21.
    van den Berg, J., Guy, S.J., Lin, M.C., Manocha, D.: Reciprocal n-body collision avoidance. In: ISRR, pp. 3–19 (August 2009)Google Scholar
  22. 22.
    Snape, J., van den Berg, J., Guy, S.J., Manocha, D.: The hybrid reciprocal velocity obstacle. IEEE Transactions on Robotics 27(4), 696–706 (2011)CrossRefGoogle Scholar
  23. 23.
    van Toll, W., Cook IV, A.F., Geraerts, R.: Navigation meshes for realistic multi-layered environments. In: IROS, pp. 3526–3532 (September 2011)Google Scholar
  24. 24.
    Kato, S., Nishiyama, S., Takeno, J.: Coordinating mobile robots by applying traffic rules. In: IROS, pp. 1535–1541 (July 1992)Google Scholar
  25. 25.
    Platzer, A., Clarke, E.M.: Formal verification of curved flight collision avoidance maneuvers: A case study. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 547–562. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. 26.
    Massey, W.S.: Cross products of vectors in higher dimensional euclidean spaces. The American Mathematical Monthly 90(10), 697–701 (1983)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent navigation. In: ICRA, pp. 1928–1935 (May 2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Fan Liu
    • 1
  • Ajit Narayanan
    • 1
  1. 1.School of Computing and Mathematical SciencesAuckland University of TechnologyNew Zealand

Personalised recommendations