Advertisement

Defendable Security in Interaction Protocols

  • Wojciech Jamroga
  • Matthijs Melissen
  • Henning Schnoor
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8291)

Abstract

We study the security of interaction protocols when incentives of participants are taken into account. We begin by formally defining correctness of a protocol, given a notion of rationality and utilities of participating agents. Based on that, we propose how to assess security when the precise incentives are unknown. Then, the security level can be defined in terms of defender sets, i.e., sets of participants who can effectively “defend” the security property as long as they are in favor of the property. In terms of technical results, we present a theoretical characterization of defendable protocols under Nash equilibrium, and study the computational complexity of related decision problems.

Keywords

Nash Equilibrium Mixed Strategy Solution Concept Security Protocol Security Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, R., Moore, T., Nagaraja, S., Ozment, A.: Incentives and information security. In: Algorithmic Game Theory (2007)Google Scholar
  2. 2.
    Asharov, G., Canetti, R., Hazay, C.: Towards a game theoretic view of secure computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 426–445. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Asharov, G., Lindell, Y.: Utility dependence in correct and fair rational secret sharing. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 559–576. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Ben-Or, M., Goldreich, O., Micali, S., Rivest, R.: A fair protocol for signing contracts. IEEE Transactions on Information Theory IT-36(1), 40–46 (1990)CrossRefGoogle Scholar
  5. 5.
    Buttyán, L., Hubaux, J., Čapkun, S.: A formal model of rational exchange and its application to the analysis of Syverson’s protocol. Journal of Computer Security 12(3,4), 551–587 (2004)Google Scholar
  6. 6.
    Chadha, R., Mitchell, J., Scedrov, A., Shmatikov, V.: Contract signing, optimism and advantage. Journal of Logic and Algebraic Programming 64(2), 189–218 (2005)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Chatterjee, K., Raman, V.: Assume-guarantee synthesis for digital contract signing. CoRR, abs/1004.2697 (2010)Google Scholar
  8. 8.
    Dodis, Y., Rabin, T.: Cryptography and game theory. In: Nisan, N., Roughgarden, T., Tardos, É., Vazirani, V.V. (eds.) Algorithmic Game Theory, ch. 8, pp. 181–208 (2007)Google Scholar
  9. 9.
    Finkbeiner, B., Schewe, S.: Coordination logic. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 305–319. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Fuchsbauer, G., Katz, J., Naccache, D.: Efficient rational secret sharing in standard communication networks. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 419–436. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Ghaderi, H., Levesque, H., Lespérance, Y.: A logical theory of coordination and joint ability. ACM Press, New York (May 2007)Google Scholar
  12. 12.
    Groce, A., Katz, J.: Fair Computation with Rational Players. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 81–98. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Halpern, J.Y., Rong, N.: Cooperative equilibrium (extended abstract). In: Proceedings of AAMAS 2010, pp. 1465–1466 (2010)Google Scholar
  14. 14.
    Kremer, S., Raskin, J.: Game analysis of abuse-free contract signing. In: Proceedings of the 15th IEEE Computer Security Foundations Workshop (CSFW 2002), pp. 206–220. IEEE Computer Society Press (2002)Google Scholar
  15. 15.
    Kremer, S., Raskin, J.: A game-based verification of non-repudiation and fair exchange protocols. Journal of Computer Security 11(3) (2003)Google Scholar
  16. 16.
    Moore, T., Anderson, R.: Economics and internet security: a survey of recent analytical, empirical and behavioral research. Technical Report TR-03-11, Computer Science Group, Harvard University (2011)Google Scholar
  17. 17.
    Nash, J.: Non-cooperative games. PhD thesis, Princeton (1950)Google Scholar
  18. 18.
    Osborne, M., Rubinstein, A.: A Course in Game Theory. MIT Press (1994)Google Scholar
  19. 19.
    Syverson, P.: Weakly secret bit commitment: Applications to lotteries and fair exchange. In: CSFW, pp. 2–13 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Wojciech Jamroga
    • 1
  • Matthijs Melissen
    • 1
  • Henning Schnoor
    • 2
  1. 1.Computer Science and Communication and Interdisciplinary Centre for Security, Reliability, and TrustUniversity of LuxembourgLuxembourg
  2. 2.Arbeitsgruppe Theoretische InformatikUniversity of KielGermany

Personalised recommendations