Advertisement

A Two Stage Approach for High School Timetabling

  • Moh’d Khaled Yousef Shambour
  • Ahamad Tajudin Khader
  • Ahmed Kheiri
  • Ender Özcan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8226)

Abstract

There are different types of educational timetabling problems which are computationally difficult to solve. In this study, we deal with the High School Timetabling Problem which requires assignment of events, such as courses, and resources, such as classrooms, to time-slots under a set of different types of constraints. We describe an approach that hybridises an Evolutionary Algorithm variant and Simulated Annealing methods to solve this problem. This approach is tested over a set of real world instances obtained across different countries. The empirical results demonstrate the viability of the hybrid approach when compared to the previously proposed techniques.

Keywords

Soft Constraint Harmony Search Algorithm Timetabling Problem Stage Approach Pitch Adjustment Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramson, D.A., Dang, H., Krisnamoorthy, M.: Simulated annealing cooling schedules for the school timetabling problem. Asia-Pacific Journal of Operational Research 16(1), 1–22 (1999)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Al-Betar, M.A., Khader, A.T.: A harmony search algorithm for university course timetabling. Annals of Operations Research 194(1), 3–31 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alia, O.M., Mandava, R.: The variants of the harmony search algorithm: an overview. Artificial Intelligence Review 36(1), 49–68 (2011)CrossRefGoogle Scholar
  4. 4.
    Awadallah, M.A., Khader, A.T., Al-Betar, M.A., Bolaji, A.: Nurse rostering using modified harmony search algorithm. In: Panigrahi, B.K., Suganthan, P.N., Das, S., Satapathy, S.C. (eds.) SEMCCO 2011, Part II. LNCS, vol. 7077, pp. 27–37. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Birbas, T., Daskalaki, S., Housos, E.: School timetabling for quality student and teacher schedules. Journal of Scheduling 12(2), 177–197 (2009)CrossRefzbMATHGoogle Scholar
  6. 6.
    Domrös, J., Homberger, J.: An evolutionary algorithm for high school timetabling. In: Proceedings of the Ninth International Conference on the Practice and Theory of Automated Timetabling (PATAT 2012), pp. 485–488 (2012)Google Scholar
  7. 7.
    Even, S., Itai, A., Shamir, A.: On the Complexity of Timetable and Multicommodity Flow Problems. SIAM Journal on Computing 5(4), 691–703 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fonseca, G.H.G., Brito, S.S., Santos, H.G.: A simulated annealing based approach to the high school timetabling problem. In: Yin, H., Costa, J.A.F., Barreto, G. (eds.) IDEAL 2012. LNCS, vol. 7435, pp. 540–549. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: Harmony search. Simulation 76(2), 60–68 (2001)CrossRefGoogle Scholar
  10. 10.
    Hoang, D.C., Yadav, P., Kumar, R., Panda, S.: A robust harmony search algorithm based clustering protocol for wireless sensor networks. In: 2010 IEEE International Conference on Communications Workshops (ICC), pp. 1–5 (2010)Google Scholar
  11. 11.
    Kheiri, A., Özcan, E., Parkes, A.J.: Hysst: Hyper-heuristic search strategies and timetabling. In: Proceedings of the Ninth International Conference on the Practice and Theory of Automated Timetabling (PATAT 2012), pp. 497–499 (2012)Google Scholar
  12. 12.
    Kingston, J.H.: A software library for high school timetabling (2009), http://sydney.edu.au/engineering/it/~jeff/khe/
  13. 13.
    Kingston, J.H.: A tiling algorithm for high school timetabling. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 208–225. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Lara, C., Flores, J.J., Calderón, F.: Solving a school timetabling problem using a bee algorithm. In: Gelbukh, A., Morales, E.F. (eds.) MICAI 2008. LNCS (LNAI), vol. 5317, pp. 664–674. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Minh, K.N.T.T., Thanh, N.D.T., Trang, K.T., Hue, N.T.T.: Using tabu search for solving a high school timetabling problem. In: Nguyen, N.T., Katarzyniak, R., Chen, S.-M. (eds.) Advances in Intelligent Information and Database Systems. SCI, vol. 283, pp. 305–313. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Pillay, N.: A survey of school timetabling research. Annals of Operations Research, 1–33 (2013)Google Scholar
  17. 17.
    Post, G.: Benchmarking project for high school timetabling (2011), http://www.utwente.nl/ctit/hstt/
  18. 18.
    Post, G., Ahmadi, S., Daskalaki, S., Kingston, J.H., Kyngas, J., Nurmi, C., Ranson, D.: An xml format for benchmarks in high school timetabling. Annals of Operations Research 194(1), 385–397 (2012)CrossRefzbMATHGoogle Scholar
  19. 19.
    Post, G., Gaspero, L., Kingston, J.H., McCollum, B., Schaerf, A.: The third international timetabling competition. Annals of Operations Research, 1–7 (2013)Google Scholar
  20. 20.
    Sørensen, M., Kristiansen, S., Stidsen, T.R.: International timetabling competition 2011: an adaptive large neighborhood search algorithm. In: Proceedings of the Ninth International Conference on the Practice and Theory of Automated Timetabling (PATAT 2012). pp. 489–492 (2012)Google Scholar
  21. 21.
    Tassopoulos, I.X., Beligiannis, G.N.: A hybrid particle swarm optimization based algorithm for high school timetabling problems. Applied Soft Computing 12(11), 3472–3489 (2012)CrossRefGoogle Scholar
  22. 22.
    Valouxis, C., Housos, E.: Constraint programming approach for school timetabling. Computers and Operations Research 30(10), 1555–1572 (2003)CrossRefzbMATHGoogle Scholar
  23. 23.
    Weyland, D.: A rigorous analysis of the harmony search algorithm: How the research community can be misled by a “novel” methodology. International Journal of Applied Metaheuristic Computing 1(2), 50–60 (2010)CrossRefGoogle Scholar
  24. 24.
    Wilke, P., Killer, H.: Walk down jump up algorithm a new hybrid algorithm for timetabling problems. In: Proceedings of the 8th International Conference on the Practice and Theory of Automated Timetabling (PATAT 2010), pp. 440–446 (2010)Google Scholar
  25. 25.
    Yuan, Y., Xu, H., Yang, J.: A hybrid harmony search algorithm for the flexible job shop scheduling problem. Applied Soft Computing 13(7), 3259–3272 (2013)CrossRefGoogle Scholar
  26. 26.
    Zou, D., Gao, L., Li, S., Wu, J., Wang, X.: A novel global harmony search algorithm for task assignment problem. Journal of Systems and Software 83(10), 1678–1688 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Moh’d Khaled Yousef Shambour
    • 1
  • Ahamad Tajudin Khader
    • 1
  • Ahmed Kheiri
    • 2
  • Ender Özcan
    • 2
  1. 1.School of Computer SciencesUniversiti Sains Malaysia (USM)Pulau PinangMalaysia
  2. 2.School of Computer ScienceUniversity of NottinghamNottinghamUK

Personalised recommendations