Autism and ADHD – Two Ends of the Same Spectrum?

  • Włodzisław Duch
  • Krzysztof Dobosz
  • Dariusz Mikołajewski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8226)


Analysis of dynamics of biologically motivated neural networks allows for studying non-linear processes responsible for cognitive functions and thus provides adequate language to understand complex mental processes, including psychiatric syndromes and disorders. Problems with attention shifts that are at the roots of Autism Spectrum Disorders (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD), have been investigated using network model of Posner Visual Orienting Task (PVOT). Changing parameters that control biophysical properties of model neurons and cause network dysfunctions provides plausible explanations of many strange ASD and ADHD phenomena.


Autism Spectrum Disorders ASD Attention-Deficit/Hyperactivity Disorder ADHD neural networks neurodynamics fuzzy symbolic dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Consortium for Neuropsychiatric Phenomics,
  2. 2.
    Duch, W.: Brains and Education: Towards Neurocognitive Phenomics. In: Reynolds, N., Webb, M., Sysło, M.M., Dagiene, V. (eds.) Learning While We are Connected, vol. 3, pp. 12–23Google Scholar
  3. 3.
    Spivey, M.: The continuity of mind. OUP, New York (2007)Google Scholar
  4. 4.
    O’Reilly, R.C., Munakata, Y.: Computational Explorations in Cognitive Neuroscience Understanding the Mind by Simulating the Brain. MIT Press, Cambridge (2000), Emergent Neural Network Simulation System Google Scholar
  5. 5.
    Grossberg, S.: Neural Dynamics of Autistic Behaviors: Learning, Recognition, Attention, Emotion, Timing, and Social Cognition. In: Patel, V.B., Preedy, V.R., Martin, C.R. (eds.) The Comprehensive Guide to Autism, Springer, London (2012)Google Scholar
  6. 6.
    Dobosz, K., Mikołajewski, D., Wójcik, G.M., Duch, W.: Simple Cyclic Movements as a Distinct Autism Feature–Computational Approach. Computer Science (in print, 2013)Google Scholar
  7. 7.
    Dobosz, K., Duch, W.: Understanding neurodynamical systems via Fuzzy Symbolic Dynamics. Neural Networks 23, 487–496 (2010)CrossRefGoogle Scholar
  8. 8.
    Duch, W., Dobosz, K.: Visualization for understanding of neurodynamical systems. Cognitive Neurodynamics 5(2), 145–160 (2011)CrossRefGoogle Scholar
  9. 9.
    Judson, M.C., Eagleson, K.L., Levitt, P.: A new synaptic player leading to autism risk: Met receptor tyrosine kinase. J. of Neurodevelopmental Disorders 3(3), 282–292 (2011)CrossRefGoogle Scholar
  10. 10.
    Duch, W., Nowak, W., Meller, J., Osiński, G., Dobosz, K., Mikołajewski, D., Wójcik, G.M.: Computational approach to understanding autism spectrum disorders. Computer Science 13(2), 47–61 (2012)CrossRefGoogle Scholar
  11. 11.
    Just, M.A., Keller, T.A., Malave, V.L., Kana, R.K., Varma, S.: Autism as a neural systems disorder: A theory of frontal-posterior underconnectivity. Neuroscience and Biobehavioral Reviews 36, 1292–1313 (2012)CrossRefGoogle Scholar
  12. 12.
    Rudie, J.D., et al.: Autism-Associated Promoter Variant in MET Impacts Functional and Structural Brain Networks. Neuron 75(5), 904–915 (2012)CrossRefGoogle Scholar
  13. 13.
    Zimmerman, A.W. (ed.): Autism: Current theories and evidence. Humana Press (2008)Google Scholar
  14. 14.
    Galle, S.A., Courchesne, V., Mottron, L., Frasnelli, J.: Olfaction in the autism spectrum. Perception 42(3), 341–355 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Włodzisław Duch
    • 1
  • Krzysztof Dobosz
    • 1
  • Dariusz Mikołajewski
    • 1
  1. 1.Department of InformaticsNicolaus Compernicus UniversityToruńPoland

Personalised recommendations