BCI Control of Whole-Body Simulated Humanoid by Combining Motor Imagery Detection and Autonomous Motion Planning

  • Karim Bouyarmane
  • Joris Vaillant
  • Norikazu Sugimoto
  • Franc̨ois Keith
  • Jun-ichiro Furukawa
  • Jun Morimoto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8226)

Abstract

In this paper we demonstrate the coupling of an autonomous planning and control framework for whole-body humanoid motion, with a brain-computer interface (BCI) system in order to achieve online real-time biasing and correction of the offline planned motion. Using the contact-before-motion planning paradigm, the humanoid autonomously plans, in a first stage, its motion to reach a desired goal configuration or contact location. In the second stage of the approach, the humanoid executes the planned motion and the user can exert online some control on the motion being executed through an EEG decoding interface. The method is applied and demonstrated in a dynamics simulator with full collision-detection on a model of the humanoid robot HRP2.

Keywords

Humanoid Whole-Body Control Motor Imagery BMI Motion Planning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bell, C.J., Shenoy, P., Chalodhorn, R., Rao, R.P.N.: Control of a humanoid robot by a noninvasive brain-computer interface in humans. Journal of Neural Engineering 5, 214–220 (2008)CrossRefGoogle Scholar
  2. 2.
    Gergondet, P., Druon, S., Kheddar, A., Hintermuller, C., Guger, C., Slater, M.: Using Brain-Computer Interface to Steer a Humanoid Robot. In: IEEE International Conference on Robotics and Biomimetics, Phuket, Thailand, pp. 192–197 (2011)Google Scholar
  3. 3.
    Chung, M., Cheung, W., Scherer, R., Rao, R.P.N.: A Hierarchical Architecture for Adaptive Brain-Computer Interfacing. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, vol. 2, pp. 1647–1652 (2011)Google Scholar
  4. 4.
    Bryan, M., Green, J., Chung, M., Chang, L., Scherery, R., Smith, J., Rao, R.P.N.: An Adaptive Brain-Computer Interface for Humanoid Robot Control. In: 11th IEEE-RAS International Conference on Humanoid Robots, Bled, Slovenia, pp. 199–204 (2011)Google Scholar
  5. 5.
    Bouyarmane, K., Kheddar, A.: Humanoid robot locomotion and manipulation step planning. Advanced Robotics 26(10), 1099–1126 (2012)CrossRefGoogle Scholar
  6. 6.
    Noda, T., Sugimoto, N., Furukawa, J., Sato, M., Hyon, S., Morimoto, J.: Brain-controlled exoskeleton robot for bmi rehabilitation. In: 12th IEEE-RAS International Conference on Humanoid Robots, Osaka, Japan, pp. 21–27 (2012)Google Scholar
  7. 7.
    Wolpaw, J.R., McFarland, D.J.: Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proceedings of the National Academy of Sciences 101(51), 17849–17854 (2004)CrossRefGoogle Scholar
  8. 8.
    Miller, K.J., Schalk, G., Fetza, E.E., den Nijs, M., Ojemanne, J.G., Rao, R.P.N.: Cortical activity during motor execution, motor imagery, and imagery-based online feedback. Proceedings of the National Academy of Sciences (2010)Google Scholar
  9. 9.
    Kuffner, J.J., Nishiwaki, K., Kagami, S., Inaba, M., Inoue, H.: Footstep Planning Among Obstacles for Biped Robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, HI, vol. 1, pp. 500–505 (2001)Google Scholar
  10. 10.
    Chestnutt, J., Kuffner, J., Nishiwaki, K., Kagami, S.: Planning Biped Navigation Strategies in Complex Environments. In: IEEE-RAS International Conference on Humanoid Robots, Munich, Germany (2003)Google Scholar
  11. 11.
    Chestnutt, J., Lau, M., Kuffner, J.J., Cheung, G., Hodgins, J., Kanade, T.: Footstep Planning for the ASIMO Humanoid Robot. In: IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 629–634 (2005)Google Scholar
  12. 12.
    Kuffner, J.J., Kagami, S., Nishiwaki, K., Inaba, M., Inoue, H.: Dynamically-Stable Motion Planning for Humanoid Robots. Autonomous Robots 12, 105–118 (2002)CrossRefMATHGoogle Scholar
  13. 13.
    Yamane, K., Kuffner, J., Hodgins, J.K.: Synthesizing Animations of Human Manipulation Tasks. ACM Transactions on Graphics (Proc. SIGGRAPH 2004) 23(3) (August 2004)Google Scholar
  14. 14.
    Yoshida, E., Kanoun, O., Esteves, C., Laumond, J.P.: Task-driven Support Polygon Reshaping for Humanoids. In: 6th IEEE-RAS International Conference on Humanoid Robots, Genova, Italy, pp. 208–213 (2006)Google Scholar
  15. 15.
    Yoshida, E., Laumond, J.-P., Esteves, C., Kanoun, O., Sakaguchi, T., Yokoi, K.: Whole-body locomotion, manipulation and reaching for humanoids. In: Egges, A., Kamphuis, A., Overmars, M. (eds.) MIG 2008. LNCS, vol. 5277, pp. 210–221. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Hauser, K., Bretl, T., Latombe, J.-C., Harada, K., Wilcox, B.: Motion Planning for legged Robots on Varied Terrain. International Journal of Robotics Research 27(11-12), 1325–1349 (2008)CrossRefGoogle Scholar
  17. 17.
    Bouyarmane, K., Kheddar, A.: Static multi-contact inverse problem for multiple humanoid robots and manipulated objects. In: 10th IEEE-RAS International Conference on Humanoid Robots, Nashville, TN, pp. 8–13 (2010)Google Scholar
  18. 18.
    Bouyarmane, K., Kheddar, A.: Multi-contact stances planning for multiple agents. In: IEEE International Conference on Robotics and Automation, Shanghai, China, pp. 5546–5353 (2011)Google Scholar
  19. 19.
    Bouyarmane, K., Kheddar, A.: Using a multi-objective controller to synthesize simulated humanoid robot motion with changing contact configurations. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, San Fransisco, pp. 4414–4419 (2011)Google Scholar
  20. 20.
    Tomioka, R., Aihara, K.: Classifying matrices with a spectral regularization. In: 24th International Conference on Machine Learning, New York, pp. 895–902 (2007)Google Scholar
  21. 21.
    Tomioka, R., Muller, K.R.: A regularized discriminative framework for EEG analysis with application to brain-computer interface. NeuroImage 49, 415–432 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Karim Bouyarmane
    • 1
  • Joris Vaillant
    • 2
    • 3
  • Norikazu Sugimoto
    • 4
  • Franc̨ois Keith
    • 2
    • 3
  • Jun-ichiro Furukawa
    • 1
    • 5
  • Jun Morimoto
    • 1
  1. 1.ATR Computational Neuroscience LaboratoriesKyotoJapan
  2. 2.CNRSMontpellier 2 University LIRMMMontpellierFrance
  3. 3.CNRS-AIST JRLUMI3218/CRTTsukubaJapan
  4. 4.National Institute of Information and Communications TechnologyOsakaJapan
  5. 5.Osaka UniversityOsakaJapan

Personalised recommendations