Limited-Birthday Distinguishers for Hash Functions

Collisions beyond the Birthday Bound Can Be Meaningful
  • Mitsugu Iwamoto
  • Thomas Peyrin
  • Yu Sasaki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8270)

Abstract

In this article, we investigate the use of limited-birthday distinguishers to the context of hash functions. We first provide a proper understanding of the limited-birthday problem and demonstrate its soundness by using a new security notion Differential Target Collision Resistance (dTCR) that is related to the classical Target Collision Resistance (TCR) notion. We then solve an open problem and close the existing security gap by proving that the best known generic attack proposed at FSE 2010 for the limited-birthday problem is indeed the best possible method.

Moreover, we show that almost all known collision attacks are in fact more than just a collision finding algorithm, since the difference mask for the message input is usually fixed. A direct and surprising corollary is that these collision attacks are interesting for cryptanalysis even when their complexity goes beyond the 2n/2 birthday bound and up to the 2n preimage bound, and can be used to derive distinguishers using the limited-birthday problem. Interestingly, cryptanalysts can now search for collision attacks beyond the 2n/2 birthday bound.

Finally, we describe a generic algorithm that turns a semi-free-start collision attack on a compression function (even if its complexity is beyond the birthday bound) into a distinguisher on the whole hash function when its internal state is not too wide. To the best of our knowledge, this is the first result that exploits classical semi-free-start collisions on the compression function to exhibit a weakness on the whole hash function. As an application of our findings, we provide distinguishers on reduced or full version of several hash functions, such as RIPEMD-128, SHA-256, Whirlpool, etc.

Keywords

hash function compression function distinguisher limited-birthday semi-free-start collision differential target collision resistance 

References

  1. 1.
    Aoki, K., Guo, J., Matusiewicz, K., Sasaki, Y., Wang, L.: Preimages for Step-Reduced SHA-2. In: Matsui (ed.) [31], pp. 578–597Google Scholar
  2. 2.
    Aumasson, J.-P., Meier, W.: Zero-sum distinguishers for reduced Keccak-f and for the core functions of Luffa and Hamsi (2009)Google Scholar
  3. 3.
    Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing Efficient Protocols. In: ACM Conference on Computer and Communications Security, pp. 62–73 (1993)Google Scholar
  4. 4.
    Bellare, M., Rogaway, P.: Collision-Resistant Hashing: Towards Making UOWHFs Practical. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 470–484. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  5. 5.
    Biryukov, A., Khovratovich, D., Nikolic, I.: Distinguisher and Related-Key Attack on the Full AES-256. In: Halevi (ed.) [17], pp. 231–249Google Scholar
  6. 6.
    Brassard, G. (ed.): CRYPTO 1989. LNCS, vol. 435. Springer, Heidelberg (1990)MATHGoogle Scholar
  7. 7.
    Canteaut, A. (ed.): FSE 2012. LNCS, vol. 7549. Springer, Heidelberg (2012)MATHGoogle Scholar
  8. 8.
    Cohen, B., Laurie, B.: AES-hash. Submission to NIST: Proposed Modes (2001), http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/aes-hash/aeshash.pdf
  9. 9.
    Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgård Revisited: How to Construct a Hash Function. In: Shoup (ed.) [47], pp. 430–448Google Scholar
  10. 10.
    Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Springer (2002)Google Scholar
  11. 11.
    Damgård, I.: A Design Principle for Hash Functions. In: Brassard (ed.) [6], pp. 416–427Google Scholar
  12. 12.
    Dobbertin, H., Bosselaers, A., Preneel, B.: RIPEMD-160: A Strengthened Version of RIPEMD. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 71–82. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  13. 13.
    Duc, A., Guo, J., Peyrin, T., Wei, L.: Unaligned Rebound Attack: Application to Keccak. In: Canteaut (ed.) [7], pp. 402–421Google Scholar
  14. 14.
    Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas, J., Walker, J.: The Skein Hash Function Family. Submission to NIST (Round 3) (2010)Google Scholar
  15. 15.
    Gilbert, H., Peyrin, T.: Super-Sbox Cryptanalysis: Improved Attacks for AES-Like Permutations. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 365–383. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Peeters, M., Bertoni, G., Daemen, J., Van Assche, G.: The Keccak SHA-3 submission. Submission to NIST, Round 3 (2011)Google Scholar
  17. 17.
    Halevi, S. (ed.): CRYPTO 2009. LNCS, vol. 5677. Springer, Heidelberg (2009)MATHGoogle Scholar
  18. 18.
    Halevi, S., Krawczyk, H.: Strengthening digital signatures via randomized hashing. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 41–59. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Hong, D., Koo, B., Sasaki, Y.: Improved Preimage Attack for 68-Step HAS-160. In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 332–348. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Indesteege, S.: The LANE hash function. Submission to NIST (2008)Google Scholar
  21. 21.
    International Organization for Standardization. ISO/IEC 10118-3:2004, Information technology – Security techniques – Hash-functions – Part 3: Dedicated hash-functions (2004)Google Scholar
  22. 22.
    Jean, J., Naya-Plasencia, M., Peyrin, T.: Improved Rebound Attack on the Finalist Grøstl. In: Canteaut (ed.) [7], pp. 110–126Google Scholar
  23. 23.
    Joux, A. (ed.): FSE 2011. LNCS, vol. 6733. Springer, Heidelberg (2011)MATHGoogle Scholar
  24. 24.
    Khovratovich, D., Nikolić, I.: Rotational Cryptanalysis of ARX. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 333–346. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  25. 25.
    Knudsen, L.R., Rijmen, V.: Known-Key Distinguishers for Some Block Ciphers. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 315–324. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. 26.
    Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound Distinguishers: Results on the Full Whirlpool Compression Function. In: Matsui (ed.) [31], pp. 126–143Google Scholar
  27. 27.
    Landelle, F., Peyrin, T.: Cryptanalysis of full RIPEMD-128. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 228–244. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  28. 28.
    Leurent, G.: Construction of Differential Characteristics in ARX Designs - Application to Skein. IACR Cryptology ePrint Archive, 2012:668 (2012)Google Scholar
  29. 29.
    Leurent, G., Nguyen, P.Q.: How Risky Is the Random-Oracle Model? In: Halevi (ed.) [17], pp. 445–464Google Scholar
  30. 30.
    Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: Theory of Majorization and Its Applications, 2nd edn. Springer (2011)Google Scholar
  31. 31.
    Matsui, M. (ed.): ASIACRYPT 2009. LNCS, vol. 5912. Springer, Heidelberg (2009)MATHGoogle Scholar
  32. 32.
    Matusiewicz, K., Naya-Plasencia, M., Nikolic, I., Sasaki, Y., Schläffer, M.: Rebound Attack on the Full Lane Compression Function. In: Matsui (ed.) [31], pp. 106–125Google Scholar
  33. 33.
    Mendel, F., Nad, T., Schläffer, M.: Cryptanalysis of Round-Reduced HAS-160. In: Kim, H. (ed.) ICISC 2011. LNCS, vol. 7259, pp. 33–47. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  34. 34.
    Mendel, F., Nad, T., Schläffer, M.: Improving local collisions: New attacks on reduced SHA-256. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 262–278. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  35. 35.
    Merkle, R.C.: One Way Hash Functions and DES. In: Brassard (ed.) [6], pp. 428–446Google Scholar
  36. 36.
    Naya-Plasencia, M.: How to Improve Rebound Attacks. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 188–205. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  37. 37.
    Naya-Plasencia, M., Toz, D., Varici, K.: Rebound Attack on JH42. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 252–269. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  38. 38.
    New European Schemes for Signatures, Integrity, and Encryption (NESSIE). NESSIE Project Announces Final Selection of CRYPTO Algorithms (2003), https://www.cosic.esat.kuleuven.be/nessie/deliverables/press_release_feb27.pdf
  39. 39.
    Nikolić, I., Pieprzyk, J., Sokołowski, P., Steinfeld, R.: Known and Chosen Key Differential Distinguishers for Block Ciphers. In: Rhee, K.-H., Nyang, D. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 29–48. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  40. 40.
    Peyrin, T.: Improved Differential Attacks for ECHO and Grøstl. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 370–392. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  41. 41.
    Preneel, B.: Analysis and design of cryptographic hash functions. PhD thesis (1993)Google Scholar
  42. 42.
    Rijmen, V., Barreto, P.S.L.M.: The WHIRLPOOL Hashing Function. Submitted to NESSIE (September 2000)Google Scholar
  43. 43.
    Rogaway, P.: Formalizing Human Ignorance. In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 211–228. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  44. 44.
    Sasaki, Y.: Meet-in-the-Middle Preimage Attacks on AES Hashing Modes and an Application to Whirlpool. In: Joux (ed.) [23], pp. 378–396Google Scholar
  45. 45.
    Sasaki, Y., Wang, L., Takasaki, Y., Sakiyama, K., Ohta, K.: Boomerang Distinguishers for Full HAS-160 Compression Function. In: Hanaoka, G., Yamauchi, T. (eds.) IWSEC 2012. LNCS, vol. 7631, pp. 156–169. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  46. 46.
    Sasaki, Y., Wang, L., Wu, S., Wu, W.: Investigating Fundamental Security Requirements on Whirlpool: Improved Preimage and Collision Attacks. In: Wang, Sako (eds.) [53], pp. 562–579Google Scholar
  47. 47.
    Shoup, V. (ed.): CRYPTO 2005. LNCS, vol. 3621. Springer, Heidelberg (2005)MATHGoogle Scholar
  48. 48.
    Telecommunications Technology Association. Hash Function Standard Part 2: Hash Function Algorithm Standard, HAS-160 (2000)Google Scholar
  49. 49.
    U.S. Department of Commerce, National Institute of Standards and Technology. Federal Register 72(212), Notices (November 2, 2007), http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
  50. 50.
    U.S. Department of Commerce, National Institute of Standards and Technology. Randomized Hashing for Digital Signatures (NIST Special Publication 800-106) (February 2009), http://csrc.nist.gov/publications/nistpubs/800-106/NIST-SP-800-106.pdf
  51. 51.
    U.S. Department of Commerce, National Institute of Standards and Technology. Secure Hash Standard (SHS) (Federal Information Processing Standards Publication 180-4) (2012), http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
  52. 52.
    Wagner, D.: A Generalized Birthday Problem. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 288–303. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  53. 53.
    Wang, X., Sako, K. (eds.): ASIACRYPT 2012. LNCS, vol. 7658. Springer, Heidelberg (2012)MATHGoogle Scholar
  54. 54.
    Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup (ed.) [47], pp. 17–36Google Scholar
  55. 55.
    Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mitsugu Iwamoto
    • 1
  • Thomas Peyrin
    • 2
  • Yu Sasaki
    • 3
  1. 1.Center for Frontier Science and EngineeringThe University of Electro-CommunicationsJapan
  2. 2.Division of Mathematical Sciences, School of Physical and Mathematical SciencesNanyang Technological UniversitySingapore
  3. 3.NTT Secure Platform LaboratoriesJapan

Personalised recommendations