Advertisement

Secure Two-Party Computation with Reusable Bit-Commitments, via a Cut-and-Choose with Forge-and-Lose Technique

(Extended Abstract)
  • Luís T. A. N. Brandão
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8270)

Abstract

A secure two-party computation (S2PC) protocol allows two parties to compute over their combined private inputs, as if intermediated by a trusted third party. In the malicious model, this can be achieved with a cut-and-choose of garbled circuits (C&C-GCs), where some GCs are verified for correctness and the remaining are evaluated to determine the circuit output. This paper presents a new C&C-GCs-based S2PC protocol, with significant advantages in efficiency and applicability. First, in contrast with prior protocols that require a majority of evaluated GCs to be correct, the new protocol only requires that at least one evaluated GC is correct. In practice this reduces the total number of GCs to approximately one third, for the same statistical security goal. This is accomplished by augmenting the C&C with a new forge-and-lose technique based on bit commitments with trapdoor. Second, the output of the new protocol includes reusable XOR-homomorphic bit commitments of all circuit input and output bits, thereby enabling efficient linkage of several S2PCs in a reactive manner. The protocol has additional interesting characteristics (which may allow new comparison tradeoffs), such as needing a low number of exponentiations, using a 2-out-of-1 type of oblivious transfer, and using the C&C structure to statistically verify the consistency of input wire keys.

Keywords

secure two-party computation cut-and-choose garbled circuits forge-and-lose homomorphic bit-commitments with trapdoor 

References

  1. [BBB+12]
    Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.: Recommendation for Key Management – Part 1: General (Revision 3) – NIST Special Publication 800-57. U.S. Department of Commerce, NIST-ITL-CSD (July 2012)Google Scholar
  2. [BCC88]
    Brassard, G., Chaum, D., Crépeau, C.: Minimum Disclosure Proofs of Knowledge. J. Comput. Syst. Sci. 37(2), 156–189 (1988)CrossRefzbMATHGoogle Scholar
  3. [BDP00]
    Boyar, J., Damgård, I., Peralta, R.: Short Non-Interactive Cryptographic Proofs. J. Cryptology 13, 449–472 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  4. [Bea96]
    Beaver, D.: Correlated pseudorandomness and the complexity of private computations. In: Proc. STOC 1996, pp. 479–488. ACM, New York (1996)Google Scholar
  5. [BHR12]
    Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Proc. CCS 2012, pp. 784–796. ACM, New York (2012), See also Cryptology ePrint Archive, Report 2012/265Google Scholar
  6. [Blu83]
    Blum, M.: Coin flipping by telephone a protocol for solving impossible problems. SIGACT News 15, 23–27 (1983)CrossRefGoogle Scholar
  7. [BMR90]
    Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols. In: Proc. STOC 1990, pp. 503–513. ACM, New York (1990)Google Scholar
  8. [Bra06]
    Brandão, L.T.A.N.: A Framework for Interactive Argument Systems using Quasigroupic Homorphic Commitment. Cryptology ePrint Archive, Report 2006/472 (2006)Google Scholar
  9. [Bri13]
    Bristol Cryptography Group. Circuits of Basic Functions Suitable For MPC and FHE, http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/ (accessed June 2013)
  10. [Can00]
    Canetti, R.: Security and Composition of Multiparty Cryptographic Protocols. J. Cryptology 13, 143–202 (2000), See also Cryptology ePrint Archive, Report 1998/018Google Scholar
  11. [CGT95]
    Crépeau, C., van de Graaf, J., Tapp, A.: Committed Oblivious Transfer and Private Multi-party Computation. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 110–123. Springer, Heidelberg (1995)Google Scholar
  12. [CLOS02]
    Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: Proc. STOC 2002, pp. 494–503. ACM, New York (2002), See also Cryptology ePrint Archive, Report 2002/140Google Scholar
  13. [Dam88]
    Damgård, I.B.: The application of claw free functions in cryptography. PhD thesis, Aarhus University, Mathematical Institute (1988)Google Scholar
  14. [EGL85]
    Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. Commun. ACM 28, 637–647 (1985)MathSciNetCrossRefGoogle Scholar
  15. [FJN+13]
    Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B., Nordholt, P.S., Orlandi, C.: MiniLEGO: Efficient Secure Two-Party Computation from General Assumptions. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 537–556. Springer, Heidelberg (2013), See also Cryptology ePrint Archive, Report 2013/155Google Scholar
  16. [FN13]
    Frederiksen, T.K., Nielsen, J.B.: Fast and Maliciously Secure Two-Party Computation Using the GPU. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 339–356. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. [GM84]
    Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and System Sciences 28(2), 270–299 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  18. [GMR84]
    Goldwasser, S., Micali, S., Rivest, R.L.: A “Paradoxical” Solution To The Signature Problem. In: Proc. FOCS 1984, pp. 441–448. IEEE Computer Society (1984)Google Scholar
  19. [GMS08]
    Goyal, V., Mohassel, P., Smith, A.: Efficient Two Party and Multi Party Computation Against Covert Adversaries. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 289–306. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. [GMW87]
    Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game. In: Proc. STOC 1987, pp. 218–229. ACM, New York (1987)Google Scholar
  21. [Gol04]
    Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications, 7th edn. Cambridge University Press, New York (2004)Google Scholar
  22. [HEKM11]
    Huang, Y., Evans, D., Katz, J., Malka, L.: Faster Secure Two-Party Computation Using Garbled Circuits. In: Proc. SEC 2011. USENIX Association (2011)Google Scholar
  23. [HKE12]
    Huang, Y., Katz, J., Evans, D.: Quid-Pro-Quo-tocols: Strengthening Semi-Honest Protocols with Dual Execution. In: Proc. S&P 2012 (May 2012)Google Scholar
  24. [HKE13]
    Huang, Y., Katz, J., Evans, D.: Efficient Secure Two-Party Computation Using Symmetric Cut-and-Choose. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 18–35. Springer, Heidelberg (2013), See also Cryptology ePrint Archive, Report 2013/081Google Scholar
  25. [IKNP03]
    Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending Oblivious Transfers Efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  26. [JS07]
    Jarecki, S., Shmatikov, V.: Efficient Two-Party Secure Computation on Committed Inputs. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 97–114. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  27. [Kir08]
    Kiraz, M.S.: Secure and Fair Two-Party Computation. Phd thesis, Technische Universiteit Eindhoven, Netherlands (2008)Google Scholar
  28. [KK12]
    Kolesnikov, V., Kumaresan, R.: Improved Secure Two-Party Computation via Information-Theoretic Garbled Circuits. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 205–221. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  29. [Kol09]
    Kolesnikov, V.: Advances and impact of secure function evaluation. Bell Labs Technical Journal 14(3), 187–192 (2009)CrossRefGoogle Scholar
  30. [KS06]
    Kiraz, M.S., Schoenmakers, B.: A protocol issue for the malicious case of Yao’s garbled circuit construction. In: Proc. 27th Symp. Information Theory in the Benelux, pp. 283–290 (2006)Google Scholar
  31. [KS08a]
    Kiraz, M.S., Schoenmakers, B.: An Efficient Protocol for Fair Secure Two-Party Computation. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 88–105. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  32. [KS08b]
    Kolesnikov, V., Schneider, T.: Improved Garbled Circuit: Free XOR Gates and Applications. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 486–498. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  33. [KSS12]
    Kreuter, B., Shelat, A., Shen, C.-H.: Billion-gate secure computation with malicious adversaries. In: Proc. Security 2012, pp. 285–300. USENIX Association (2012), See also Cryptology ePrint Archive, Report 2012/179Google Scholar
  34. [Lin03]
    Lindell: Parallel Coin-Tossing and Constant-Round Secure Two-Party Computation. J. Cryptology 16(3), 143–184 (2003), See also Cryptology ePrint Archive, Report 2001/107Google Scholar
  35. [Lin13]
    Lindell, Y.: Fast Cut-and-Choose Based Protocols for Malicious and Covert Adversaries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 1–17. Springer, Heidelberg (2013), See also Cryptology ePrint Archive, Report 2013/079Google Scholar
  36. [LP02]
    Lindell, Y., Pinkas, B.: Privacy Preserving Data Mining. J. Cryptology 15(3), 177–206 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  37. [LP07]
    Lindell, Y., Pinkas, B.: An Efficient Protocol for Secure Two-Party Computation in the Presence of Malicious Adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007), See also Cryptology ePrint Archive, Report 2008/049Google Scholar
  38. [LP09]
    Lindell, Y., Pinkas, B.: A Proof of Security of Yao’s Protocol for Two-Party Computation. J. Cryptology 22(2), 161–188 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  39. [LP11]
    Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious transfer. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 329–346. Springer, Heidelberg (2011), See also Cryptology ePrint Archive, Report 2010/284Google Scholar
  40. [MF06]
    Mohassel, P., Franklin, M.K.: Efficiency Tradeoffs for Malicious Two-Party Computation. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 458–473. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  41. [NNOB12]
    Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A New Approach to Practical Active-Secure Two-Party Computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012), See also Cryptology ePrint Archive, Report 2011/091Google Scholar
  42. [NO09]
    Nielsen, J.B., Orlandi, C.: LEGO for Two-Party Secure Computation. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer, Heidelberg (2009), See also Cryptology ePrint Archive, Report 2008/427Google Scholar
  43. [NP01]
    Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA 2001, pp. 448–457. SIAM, Philadelphia (2001)Google Scholar
  44. [NPS99]
    Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism design. In: Proc. EC 1999, pp. 129–139. ACM, New York (1999)Google Scholar
  45. [NZM91]
    Niven, I.M., Zuckerman, H.S., Montgomery, H.L.: An introduction to the theory of numbers, 5th edn. Wiley (1991)Google Scholar
  46. [Pin03]
    Pinkas, B.: Fair Secure Two-Party Computation. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 647–647. Springer, Heidelberg (2003)Google Scholar
  47. [PSSW09]
    Pinkas, B., Schneider, T., Smart, N., Williams, S.: Secure Two-Party Computation Is Practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 250–267. Springer, Heidelberg (2009), See also Cryptology ePrint Archive, Report 2009/314Google Scholar
  48. [Rab81]
    Rabin, M.O.: How to exchange secrets with oblivious transfer. Technical Report TR-81, Harvard University, Aiken Computation Lab, Cambridge, MA (1981), See typesetted version in Cryptology ePrint Archive, Report 2005/187Google Scholar
  49. [SS11]
    Shelat, A., Shen, C.-H.: Two-Output Secure Computation with Malicious Adversaries. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 386–405. Springer, Heidelberg (2011), See also Cryptology ePrint Archive, Report 2011/533Google Scholar
  50. [vdGP88]
    van de Graaf, J., Peralta, R.: A Simple and Secure Way to Show the Validity of Your Public Key. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 128–134. Springer, Heidelberg (1988)Google Scholar
  51. [Woo07]
    Woodruff, D.P.: Revisiting the Efficiency of Malicious Two-Party Computation. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 79–96. Springer, Heidelberg (2007), See also Cryptology ePrint Archive, Report 2006/397Google Scholar
  52. [Yao82]
    Yao, A.C.: Protocols for secure computations. In: Proc. FOCS 1982, pp. 160–164. IEEE Computer Society (1982)Google Scholar
  53. [Yao86]
    Yao, A.C.-C.: How to generate and exchange secrets. In: FOCS 1986, pp. 162–167 (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Luís T. A. N. Brandão
    • 1
    • 2
  1. 1.Faculty of Sciences/ LaSIGEUniversity of LisbonLisboaPortugal
  2. 2.Electrical & Computer EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations