Advertisement

Fully Homomorphic Message Authenticators

  • Rosario Gennaro
  • Daniel Wichs
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8270)

Abstract

We define and construct a new primitive called a fully homomorphic message authenticator. With such scheme, anybody can perform arbitrary computations over authenticated data and produce a short tag that authenticates the result of the computation (without knowing the secret key). This tag can be verified using the secret key to ensure that the claimed result is indeed the correct output of the specified computation over previously authenticated data (without knowing the underlying data). For example, Alice can upload authenticated data to “the cloud”, which then performs some specified computations over this data and sends the output to Bob, along with a short tag that convinces Bob of correctness. Alice and Bob only share a secret key, and Bob never needs to know Alice’s underlying data. Our construction relies on fully homomorphic encryption to build fully homomorphic message authenticators.

Keywords

Network Code Homomorphic Encryption Identity Program Outsource Data Label Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Agrawal, S., Boneh, D.: Homomorphic MACs: MAC-based integrity for network coding. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 292–305. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Applebaum, B., Ishai, Y., Kushilevitz, E.: From secrecy to soundness: Efficient verification via secure computation. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 152–163. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Ateniese, G., Burns, R.C., Curtmola, R., Herring, J., Kissner, L., Peterson, Z.N.J., Song, D.: Provable data possession at untrusted stores. In: Ning, P., di Vimercati, S.D.C., Syverson, P.F. (eds.) ACM CCS 2007, pp. 598–609. ACM Press (October 2007)Google Scholar
  4. 4.
    Ateniese, G., Kamara, S., Katz, J.: Proofs of storage from homomorphic identification protocols. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 319–333. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Attrapadung, N., Libert, B.: Homomorphic network coding signatures in the standard model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 17–34. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over large datasets. In: Rogaway (ed.) [32], pp. 111–131Google Scholar
  7. 7.
    Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resistance to succinct non-interactive arguments of knowledge, and back again. In: Goldwasser (ed.) [26], pp. 326–349Google Scholar
  8. 8.
    Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and bootstrapping for snarks and proof-carrying data. Cryptology ePrint Archive, Report 2012/095 (2012), http://eprint.iacr.org/
  9. 9.
    Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a linear subspace: Signature schemes for network coding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 68–87. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary fields and new tools for lattice-based signatures. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 1–16. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption without bootstrapping. In: Goldwasser (ed.) [26], pp. 309–325Google Scholar
  13. 13.
    Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) lwe. In: Ostrovsky, R. (ed.) FOCS, pp. 97–106. IEEE (2011)Google Scholar
  14. 14.
    Catalano, D., Fiore, D.: Practical homomorphic MACs for arithmetic circuits. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 336–352. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Catalano, D., Fiore, D., Warinschi, B.: Efficient network coding signatures in the standard model. In: Fischlin, et al. (eds.) [19], pp. 680–696Google Scholar
  16. 16.
    Chung, K.-M., Kalai, Y., Vadhan, S.: Improved delegation of computation using fully homomorphic encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 483–501. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Chung, K.-M., Kalai, Y.T., Liu, F.-H., Raz, R.: Memory delegation. In: Rogaway (ed.) [32], pp. 151–168Google Scholar
  18. 18.
    Dodis, Y., Vadhan, S., Wichs, D.: Proofs of retrievability via hardness amplification. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 109–127. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Fischlin, M., Buchmann, J., Manulis, M. (eds.): PKC 2012. LNCS, vol. 7293. Springer, Heidelberg (2012)zbMATHGoogle Scholar
  20. 20.
    Freeman, D.M.: Improved security for linearly homomorphic signatures: A generic framework. In: Fischlin, et al. (eds.) [19], pp. 697–714Google Scholar
  21. 21.
    Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Outsourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct nizks without pcps. Cryptology ePrint Archive, Report 2012/215 (2012), http://eprint.iacr.org/
  23. 23.
    Gennaro, R., Katz, J., Krawczyk, H., Rabin, T.: Secure network coding over the integers. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 142–160. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. 24.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press (May/June 2009)Google Scholar
  25. 25.
    Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp. 99–108. ACM Press (June 2011)Google Scholar
  26. 26.
    Goldwasser, S. (ed.): Innovations in Theoretical Computer Science 2012, Cambridge, MA, USA, January 8-10. ACM (2012)Google Scholar
  27. 27.
    Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive proofs for muggles. In: Ladner, R.E., Dwork, C. (eds.) ACM STOC, pp. 113–122. ACM Press (May 2008)Google Scholar
  28. 28.
    Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  29. 29.
    Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  30. 30.
    Micali, S.: CS proofs (extended abstracts). In: FOCS, pp. 436–453. IEEE Computer Society (1994)Google Scholar
  31. 31.
    Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 222–242. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  32. 32.
    Rogaway, P. (ed.): CRYPTO 2011. LNCS, vol. 6841. Springer, Heidelberg (2011)zbMATHGoogle Scholar
  33. 33.
    Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  34. 34.
    van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rosario Gennaro
    • 1
  • Daniel Wichs
    • 2
  1. 1.City CollegeCUNYUSA
  2. 2.Northeastern UniversityUSA

Personalised recommendations