New Generic Attacks against Hash-Based MACs

  • Gaëtan Leurent
  • Thomas Peyrin
  • Lei Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8270)

Abstract

In this paper we study the security of hash-based MAC algorithms (such as HMAC and NMAC) above the birthday bound. Up to the birthday bound, HMAC and NMAC are proven to be secure under reasonable assumptions on the hash function. On the other hand, if an n-bit MAC is built from a hash function with a l-bit state (l ≥ n), there is a well-known existential forgery attack with complexity 2l/2. However, the remaining security after 2l/2 computations is not well understood. In particular it is widely assumed that if the underlying hash function is sound, then a generic universal forgery attack should require 2n computations and some distinguishing (e.g. distinguishing-H but not distinguishing-R) and state-recovery attacks should also require 2l computations (or 2k if k < l).

In this work, we show that above the birthday bound, hash-based MACs offer significantly less security than previously believed. Our main result is a generic distinguishing-H and state-recovery attack against hash-based MACs with a complexity of only \(\tilde O(2^{l/2})\). In addition, we show a key-recovery attack with complexity \(\tilde O(2^{3l/4})\) against HMAC used with a hash functions with an internal checksum, such as GOST. This surprising result shows that the use of a checksum might actually weaken a hash function when used in a MAC. We stress that our attacks are generic, and they are in fact more efficient than some previous attacks proposed on MACs instanciated with concrete hash functions.

We use techniques similar to the cycle-detection technique proposed by Peyrin et al. at Asiacrypt 2012 to attack HMAC in the related-key model. However, our attacks works in the single-key model for both HMAC and NMAC, and without restriction on the key size.

Keywords

NMAC HMAC hash function distinguishing-H key recovery GOST 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bellare, M.: New Proofs for NMAC and HMAC: Security Without Collision-Resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Authentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer, Heidelberg (1996)Google Scholar
  3. 3.
    Brassard, G. (ed.): CRYPTO 1989. LNCS, vol. 435. Springer, Heidelberg (1990)MATHGoogle Scholar
  4. 4.
    Damgård, I.: A Design Principle for Hash Functions. In: [3], pp. 416–427Google Scholar
  5. 5.
    Dolmatov, V.: GOST R 34.11-94: Hash Function Algorithm. RFC 5831 (Informational) (March 2010)Google Scholar
  6. 6.
    FAPSI, VNIIstandart: GOST 34.11-94, Information Technology Cryptographic Data Security Hashing Function (1994) (in Russian)Google Scholar
  7. 7.
    Flajolet, P., Odlyzko, A.M.: Random Mapping Statistics. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 329–354. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  8. 8.
    Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press (2009)Google Scholar
  9. 9.
    Fouque, P.-A., Leurent, G., Nguyen, P.Q.: Full Key-Recovery Attacks on HMAC/NMAC-MD4 and NMAC-MD5. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 13–30. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Gauravaram, P., Kelsey, J.: Linear-XOR and Additive Checksums Don’t Protect Damgård-Merkle Hashes from Generic Attacks. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 36–51. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Joux, A.: Multicollisions in Iterated Hash Functions. Application to Cascaded Constructions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Kim, J., Biryukov, A., Preneel, B., Hong, S.: On the Security of HMAC and NMAC Based on HAVAL, MD4, MD5, SHA-0 and SHA-1 (Extended Abstract). In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 242–256. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Merkle, R.C.: One Way Hash Functions and DES. In: [3], pp. 428–446Google Scholar
  14. 14.
    Peyrin, T., Sasaki, Y., Wang, L.: Generic Related-Key Attacks for HMAC. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 580–597. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Popov, V., Kurepkin, I., Leontiev, S.: Additional Cryptographic Algorithms for Use with GOST 28147-89, GOST R 34.10-94, GOST R 34.10-2001, and GOST R 34.11-94 Algorithms. RFC 4357 (Informational) (January 2006)Google Scholar
  16. 16.
    Preneel, B.: HMAC. In: van Tilborg, H.C.A., Jajodia, S. (eds.) Encyclopedia of Cryptography and Security, 2nd edn., pp. 559–560. Springer (2011)Google Scholar
  17. 17.
    Preneel, B., van Oorschot, P.C.: MDx-MAC and Building Fast MACs from Hash Functions. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 1–14. Springer, Heidelberg (1995)Google Scholar
  18. 18.
    Rechberger, C., Rijmen, V.: New Results on NMAC/HMAC when Instantiated with Popular Hash Functions. J. UCS 14(3), 347–376 (2008)MathSciNetGoogle Scholar
  19. 19.
    Rivest, R.L.: The MD4 Message Digest Algorithm. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 303–311. Springer, Heidelberg (1991)Google Scholar
  20. 20.
    Rivest, R.L.: The MD5 message-digest algorithm. Request for Comments (RFC) 1320, Internet Activities Board, Internet Privacy Task Force (April 1992)Google Scholar
  21. 21.
    Tsudik, G.: Message Authentication with One-Way Hash Functions. In: INFOCOM, pp. 2055–2059 (1992)Google Scholar
  22. 22.
    U.S. Department of Commerce, National Institute of Standards and Technology: Secure Hash Standard (SHS) (Federal Information Processing Standards Publication 180-3) (2008), http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
  23. 23.
    van Oorschot, P.C., Wiener, M.J.: Parallel Collision Search with Cryptanalytic Applications. J. Cryptology 12(1), 1–28 (1999)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Wang, L., Ohta, K., Kunihiro, N.: New Key-Recovery Attacks on HMAC/NMAC-MD4 and NMAC-MD5. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 237–253. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    Wang, X., Yu, H., Wang, W., Zhang, H., Zhan, T.: Cryptanalysis on HMAC/NMAC-MD5 and MD5-MAC. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 121–133. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. 26.
    Yasuda, K.: “Sandwich” Is Indeed Secure: How to Authenticate a Message with Just One Hashing. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 355–369. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  27. 27.
    Yu, H., Wang, X.: Full Key-Recovery Attack on the HMAC/NMAC Based on 3 and 4-Pass HAVAL. In: Bao, F., Li, H., Wang, G. (eds.) ISPEC 2009. LNCS, vol. 5451, pp. 285–297. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gaëtan Leurent
    • 1
  • Thomas Peyrin
    • 2
  • Lei Wang
    • 2
  1. 1.Université Catholique de LouvainBelgium
  2. 2.Nanyang Technological UniversitySingapore

Personalised recommendations