Investigation of Chronic Stress Differences between Groups Exposed to Three Stressors and Normal Controls by Analyzing EEG Recordings

  • Na Li
  • Bin Hu
  • Jing Chen
  • Hong Peng
  • Qinglin Zhao
  • Mingqi Zhao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8227)


Despite clear evidence of connections between chronic stress, brain patterns, age and gender, few studies have explored stressor differences in stress detection. This paper presents a stressor-specific evaluation model conducted between stress levels and electroencephalogram(EEG) features. The overall complexity, chaos of EEG signals, and spectrum power of certain EEG bands from pre-frontal lobe(Fp1, Fp2 and Fpz) was analyzed. The results showed that different stressors can lead to varying degree of changes of frontal EEG complexity. Future study will build the stressor-specific evaluation model under considering the effects of gender and age.


Stress Stressor Electroencephalogram Complexity Frontal Asymmetry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hoffmann, E.: Brain Training Against Stress: Theory, Methods and Results from an Outcome Study. Stress Report 4, 1–24 (2005)Google Scholar
  2. 2.
    Chen, F., et al.: A New Measurement of Complexity for Studying EEG Mutual Information. Shengwu Wuli Xuebao 14(3), 508–512 (1998)Google Scholar
  3. 3.
    Mnnroe, S.M., Slavich, G.M., Georgiades, K.: The Social Environment and Life Stress in Depression. In: Handbook of Depression, pp. 340–360 (2009)Google Scholar
  4. 4.
    Thakor, N.V., Tong, S.: Advances in Quantitative Electroencephalogram Analysis Methods. Annual Review of Biomedical Engineering 6(1), 453–495 (2004)CrossRefGoogle Scholar
  5. 5.
    Davidson, R.J., et al.: Depression: Perspectives from Affective Neuroscience. Annual Review of Psychology 53(1), 545–574 (2002)CrossRefGoogle Scholar
  6. 6.
    Thibodeau, R., Jorgensen, R.S., Kim, S.: Depression, Anxiety, and Resting Frontal EEG Asymmetry: A Meta-analytic Review (0021-843X (Print))Google Scholar
  7. 7.
    Allen, J.J.B., et al.: The Stability of Resting Frontal Electroencephalographic Asymmetry in Depression. Psychophysiology 41(2), 269–280 (2004)CrossRefGoogle Scholar
  8. 8.
    Nandrino, J.-L., et al.: Decrease of Complexity in EEG as a Symptom of Depression. NeuroReport 5(4), 528–530 (1994)CrossRefGoogle Scholar
  9. 9.
    Peng, H., et al.: A Method of Identifying Chronic Stress by EEG. Personal and Ubiquitous Computing, 1–7 (2012)Google Scholar
  10. 10.
    Zhang, X., Hu, B., Moore, P., Chen, J., Zhou, L.: Emotiono: An Ontology with Rule-Based Reasoning for Emotion Recognition. In: Lu, B.-L., Zhang, L., Kwok, J. (eds.) ICONIP 2011, Part II. LNCS, vol. 7063, pp. 89–98. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Carvalho, A., Moraes, H., et al.: EEG Frontal Asymmetry in the Depressed and Remitted Elderly: Is It Related to the Trait or to the State of Depression? (1573-2517 (Electronic))Google Scholar
  12. 12.
    Bin, H., et al.: EEG-Based Cognitive Interfaces for Ubiquitous Applications: Developments and Challenges. IEEE Intelligent Systems 26(5), 46–53 (2011)CrossRefGoogle Scholar
  13. 13.
    Schaffer, C.E., Davidson, R.J., Saron, C.: Frontal and Parietal Electroencephalogram Asymmetry in Depressed and Nondepressed Subjects. Biological Psychiatry 18, 753–762 (1983)Google Scholar
  14. 14.
    Smit, D.J.A., et al.: The Relation between Frontal EEG Asymmetry and the Risk for Anxiety and Depression. Biological Psychology 74(1), 26–33 (2007)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lempel, A., Ziv, J.: On the Complexity of Finite Sequences. IEEE Transactions on Information Theory 22(1), 75–81 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Grassberger, P., Procaccia, I.: Measuring the Strangeness of Strange Attractors. Physica D: Nonlinear Phenomena 9(1-2), 189–208 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Stam, C.J., van Woerkom, T.C.A.M., Pritchard, W.S.: Use of Non-linear EEG Measures to Characterize EEG Changes during Mental Activity. Electroencephalography and Clinical Neurophysiology 99(3), 214–224 (1996)CrossRefGoogle Scholar
  18. 18.
    Rosenstein, M.T., Collins, J.J., De Luca, C.J.: A Practical Method for Calculating Largest Lyapunov Exponents from Small Data Sets. Physica D: Nonlinear Phenomena 65(1-2), 117–134 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kulish, V., Sourin, A., Sourina, O.: Human Electroencephalograms Seen As Fractal Time Series: Mathematical Analysis and Visualization. Computers in Biology and Medicine 36(3), 291–302 (2006)CrossRefGoogle Scholar
  20. 20.
    Tang, Y., et al.: Entropy Analysis of the EEG Alpha Activity in Depression Patients. Journal of Biomedical Engineering 26(4), 739–742 (2009)Google Scholar
  21. 21.
    Hugdahl, K.R., Rishovd, B., Lund, A., Asbjørnsen, A., Egeland, J., Ersland, L., Landrø, N.I., Roness, A., Stordal, K.I., Sundet, K., Thomsen, T.: Brain Activation Measured With fMRI During a Mental Arithmetic Task in Schizophrenia and Major Depression. The American Journal of Psychiatry 161(2), 286–293 (2004)CrossRefGoogle Scholar
  22. 22.
    Field, T., Pickens, J., et al.: Targeting Adolescent Mothers with Depressive Symptoms for Early Intervention (0001-8449 (Print))Google Scholar
  23. 23.
    Debener, S., et al.: Is Resting Anterior EEG Alpha Asymmetry a Trait Marker for Depression? Findings for Healthy Adults and Clinically Depressed Patients. Neuropsychobiology 41(1), 31–37 (2000)CrossRefGoogle Scholar
  24. 24.
    Bruder, G.E., et al.: Electroencephalographic and Perceptual Asymmetry Differences between Responders and Nonresponders to an SSRI Antidepressant. Biological Psychiatry 49(5), 416–425 (2001)CrossRefGoogle Scholar
  25. 25.
    Hinrikus, H., Suhhova, A., et al.: Spectral Features of EEG in Depression (1862-278X (Electronic))Google Scholar
  26. 26.
    Tomarken, A.J., et al.: Resting Frontal Brain Activity: Linkages to Maternal Depression and Socio-economic Status among Adolescents. Biological Psychology 67(1-2), 77–102 (2004)CrossRefGoogle Scholar
  27. 27.
    Coan, J.A., et al.: The Heritability of Trait Frontal EEG Asymmetry and Negative Emotionality: Sex Differences and Genetic Nonadditivity. The University of Arizona (2003)Google Scholar
  28. 28.
    Minati, L., Grisoli, M., Bruzzone, M.G.: MR Spectroscopy, Functional MRI, and Diffusion-tensor Imaging in the Aging Brain: A Conceptual Review. Journal of Geriatric Psychiatry and Neurology 20(1), 3–21 (2007)CrossRefGoogle Scholar
  29. 29.
    Bruder, G.E., et al.: Regional Brain Asymmetries in Major Depression with or without an Anxiety Disorder: A Quantitative Electroencephalographic Study. Biological Psychiatry 41(9), 939–948 (1997)CrossRefGoogle Scholar
  30. 30.
    Reid, S.A., Duke, L.M., Allen, J.J.B.: Resting Frontal Electroencephalographic Asymmetry in Depression: Inconsistencies Suggest the Need to Identify Mediating Factors. Psychophysiology 35(4), 389–404 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Na Li
    • 1
  • Bin Hu
    • 1
    • 2
  • Jing Chen
    • 1
  • Hong Peng
    • 1
  • Qinglin Zhao
    • 1
  • Mingqi Zhao
    • 1
  1. 1.The School of Information Science and EngineeringLanzhou UniversityLanzhouChina
  2. 2.The School of Computing, Telecommunications and NetworksBirmingham City UniversityBirminghamUK

Personalised recommendations