Advertisement

Computational Approach for Measuring the Tear Film Break-Up Time in an Unsupervised Manner

  • Lucía Ramos
  • Noelia Barreira
  • Antonio Mosquera
  • Manuel Currás
  • Hugo Pena-Verdeal
  • María Jesús Giráldez
  • Manuel G. Penedo
Part of the Communications in Computer and Information Science book series (CCIS, volume 246)

Abstract

Dry eye syndrome is a common disorder of the tear film, affecting a significant percentage of the population. The Break-Up Time (BUT) is a clinical test used for the diagnosis of this disease. In this research, it is proposed an automatic methodology to evaluate the BUT test. This methodology locates the different measurement areas from a video of the tear film, extracts the Region Of Interest (ROI) and performs the BUT test in each measurement area. Furthermore, it is independent of some specific features of each video such as the eye size, the intensity variation, or the starting point of the measurement frame sequence. This methodology has been tested on a dataset composed of 18 videos that have been annotated by four different experts. The average difference between the automatic measurement and the experts’ measures is on the acceptable range considering the high inter-observer variance.

Keywords

Tear Film Dry Eye Syndrome Break-Up Time (BUT) Test Video Analysis Image Processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Holly, F., Lemp, M.: Tear film physiology and dry eyes. Surv. Ophthalmol 22, 69–87 (1977)CrossRefGoogle Scholar
  2. 2.
    Lemp, M.: Advances in understanding and managing dry eye disease. Am. J. Ophthalmol. 46, 350–356 (2008)CrossRefGoogle Scholar
  3. 3.
    Lowther, G.: Dryness, tears and contact lens wear. Reed Elsevier, USA (1977)Google Scholar
  4. 4.
    Fenga, C., Aragona, P., Cacciola, A., Spinela, R., Di Nola, C., Ferreri, F., Rania, L.: Melbonian gland dysfunction and ocular discomform in video display terminal workers. Eye 22, 91–95 (2008)CrossRefGoogle Scholar
  5. 5.
    García-Resúa, C., Lira, M., Yebra-Pimentel, E.: Evaluación superficial en jóvenes universitarios. Rev. Esp. Contact 12, 37–41 (2005)Google Scholar
  6. 6.
    Khanal, S.: Dry eye diagnosis. Invest. Opthalmol. Vis. Sci. 49, 1907–1914 (2008)CrossRefGoogle Scholar
  7. 7.
    Guillon, J.P.: Non-invasive tearscope plus routine for contact lens fitting. Contact Lens and Anterior Eye 2, S31–S40 (1998)CrossRefGoogle Scholar
  8. 8.
    Jin Hak Lee, M.D., Chang Won Kee, M.D.: The significance of tear film break-up time in the diagnosis of dry eye syndrome. Kor. J. Opthalmol. 21, 69–71 (1988)Google Scholar
  9. 9.
    Cho, P., et al.: Reliability of the tear break-up time thechnique of assessing tear stability and the locations of thear break-up in hong kong chinese. Optom. Vis. Sci. 69, 879–885 (1992)CrossRefGoogle Scholar
  10. 10.
    Cho, P., Brown, B.: Review of the tear break-up time and a closer look at the tear break-up time of hong kong chinese. Optom. Vis. Sci. 70, 30–38 (1993)CrossRefGoogle Scholar
  11. 11.
    Yedidya, T., Hartley, R., Guillon, J.P.: Automatic detection of pre-ocular tear film break-up sequence in dry eyes. In: DICTA, pp. 442–448 (2008)Google Scholar
  12. 12.
    Yedidya, T., Carr, P., Hartley, R., Guillon, J.-P.: Enforcing monotonic temporal evolution in dry eye images. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part II. LNCS, vol. 5762, pp. 976–984. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Cebreiro, E., Ramos, L., Mosquera, A., Barreira, N., Penedo, M.G.: Automation of the tear film break-up time test. In: ISABEL (2011)Google Scholar
  14. 14.
    Ramos, L., Barreira, N., Mosquera, A., Currás, M., Pena-Verdea, H., Giráldez, M.J., Penedo, M.G.: Adaptive parameter computation for the automatic measure of the tear break-up time. In: 16th International Conference on Knowledge-Based and Intelligent Information and Engineering Systems (KES 2012), vol. 243, pp. 1370–1379 (2012)Google Scholar
  15. 15.
    Canny, J.F.: A computational approach to edge detection. IEEE PAMI, 679–698 (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Lucía Ramos
    • 1
  • Noelia Barreira
    • 1
  • Antonio Mosquera
    • 2
  • Manuel Currás
    • 1
  • Hugo Pena-Verdeal
    • 3
  • María Jesús Giráldez
    • 3
  • Manuel G. Penedo
    • 1
  1. 1.VARPA Group, Department of Computer ScienceUniv. of A CoruñaSpain
  2. 2.Artificial Vision Group, Department of Electronics and Computer ScienceUniv. of Santiago de CompostelaSpain
  3. 3.Optometry Group, Dept. Applied PhysicsUniv. Santiago de CompostelaSpain

Personalised recommendations