Advertisement

A Performance Boost for Hash-Based Signatures

  • Thomas Eisenbarth
  • Ingo von Maurich
  • Christof Paar
  • Xin Ye
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8260)

Abstract

Digital signatures have become a key component of many embedded system solutions and are facing strong security and efficiency requirements. In this work, algorithmic improvements for the authentication path computation decrease the average signature computation time by close to 50 % when compared to state-of-the-art algorithms. The proposed scheme is implemented on an Intel Core i7 CPU and an AVR ATxmega microcontroller with optimized versions for the respective target platform. The theoretical algorithmic improvements are verified and cryptographic hardware accelerators are used to achieve competitive performance.

Keywords

hash-based cryptography signatures software microcontroller post-quantum cryptography embedded security 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
  3. 3.
  4. 4.
    Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and related-key attack on the full aes-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 231–249. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Buchmann, J., Dahmen, E., Ereth, S., Hülsing, A., Rückert, M.: On the Security of the Winternitz One-Time Signature Scheme. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 363–378. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Buchmann, J., Dahmen, E., Hülsing, A.: XMSS - A Practical Forward Secure Signature Scheme Based on Minimal Security Assumptions. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 117–129. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Buchmann, J., Dahmen, E., Szydlo, M.: Hash-based Digital Signature Schemes. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 35–93. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Dods, C., Smart, N.P., Stam, M.: Hash Based Digital Signature Schemes. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 96–115. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Eisenbarth, T., von Maurich, I., Ye, X.: Faster Hash-based Signatures with Bounded Leakage. In: Selected Areas in Cryptography, SAC 2013 (August 2013)Google Scholar
  10. 10.
    Hülsing, A.: W-OTS+ - Shorter Signatures for Hash-Based Signature Schemes. In: Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp. 173–188. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Hülsing, A., Busold, C., Buchmann, J.: Forward Secure Signatures on Smart Cards. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 66–80. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Intel. Whitepaper on the Intel AES Instructions Set, http://software.intel.com/file/24917
  14. 14.
    Lamport, L.: Constructing Digital Signatures from a One-Way Function. Technical report, CSL-98, SRI International (1979)Google Scholar
  15. 15.
    Lee, J., Stam, M.: MJH: A Faster Alternative to MDC-2. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 213–236. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Matyas, S.M., Meyer, C.H., Oseas, J.: Generating strong one-way functions with cryptographic algorithm. IBM Technical Disclosure Bulletin 27(10A), 5658–5659 (1985)Google Scholar
  17. 17.
    Menezes, A., Van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC, Algorithm 9.41 (1997)Google Scholar
  18. 18.
    Merkle, R.C.: A Certified Digital Signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)Google Scholar
  19. 19.
    Rohde, S., Eisenbarth, T., Dahmen, E., Buchmann, J., Paar, C.: Fast Hash-Based Signatures on Constrained Devices. In: Grimaud, G., Standaert, F.-X. (eds.) CARDIS 2008. LNCS, vol. 5189, pp. 104–117. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Standaert, F.-X., Pereira, O., Yu, Y., Quisquater, J.-J., Yung, M., Oswald, E.: Leakage Resilient Cryptography in Practice. In: Sadeghi, A.-R., Naccache, D., Basin, D., Maurer, U. (eds.) Towards Hardware-Intrinsic Security, Information Security and Cryptography, pp. 99–134. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Szydlo, M.: Merkle Tree Traversal in Log Space and Time. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 541–554. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Thomas Eisenbarth
    • 1
  • Ingo von Maurich
    • 2
  • Christof Paar
    • 2
  • Xin Ye
    • 1
  1. 1.Worcester Polytechnic InstituteWorcesterUSA
  2. 2.Horst Görtz Institute for IT-SecurityRuhr-University BochumGermany

Personalised recommendations