Advertisement

Genetik

  • B. Neubauer
  • A. Hahn
Chapter
  • 1.7k Downloads

Zusammenfassung

Im Laufe ihres Lebens erkranken ca. 3% aller Menschen an einer Epilepsie. Etwa 40% der Epilepsien manifestieren sich im Kindes- und Jugendalter und rund die Hälfte aller Epilepsien in dieser Altersgruppe ist genetischen Ursprungs.

Literatur

  1. Aicardi J, Crow YJ, Stephenson JBP (1993–2013) Aicardi- Goutières syndrome. In: Pagon RA, Adam MP, Bird TD, Dolan CR, Fong CT, Smith RJH, Stephens K (eds) Gene Reviews™. University of Washington, Seattle (WA)Google Scholar
  2. Alfadhel M, Almuntashri M, Jadah RH et al (2013) Biotinresponsive basal ganglia disease should be renamed biotin-thiamine-responsive basal ganglia disease: a retrospective review of the clinical, radiological and molecular findings of 18 new cases. Orphanet J Rare Dis 8:8–3. doi: 10.1186/1750-1172-8-83CrossRefGoogle Scholar
  3. Barcia G, Fleming MR, Deligniere A et al (2012) De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy. Nat Genet 44:1255–1259CrossRefPubMedPubMedCentralGoogle Scholar
  4. Beal JC, Cherian K, Moshe SL (2012) Early-onset epileptic encephalopathies: Ohtahara syndrome and early myoclonic encephalopathy. Pediatr Neurol 47:317–323CrossRefPubMedGoogle Scholar
  5. Berg AT, Berkovic SF, Brodie MJ et al (2010) Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005-2009. Epilepsia 51:676–685CrossRefPubMedGoogle Scholar
  6. Berkovic SF, Howell RA, Hay DA, Hopper JL (1998) Epilepsies in twins: genetics of the major epilepsy syndromes. Ann Neurol 43:435–445CrossRefPubMedGoogle Scholar
  7. Carvill GL, Heavin SB, Yendle SC et al (2013) Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nat Genet 45:825–830CrossRefPubMedPubMedCentralGoogle Scholar
  8. Combi R, Dalprà L, Ferini-Strambi L, Tenchini ML (2005) Frontal lobe epilepsy and mutations of the corticotropin-releasing hormone gene. Ann Neurol 58:899–904CrossRefPubMedGoogle Scholar
  9. Depienne C, Bouteiller D, Keren B et al (2009) Sporadic infantile epileptic encephalopathy caused by mutations in PCDH19 resembles Dravet syndrome but mainly affects females. PLoS Genet 5:e100038–1CrossRefGoogle Scholar
  10. Ebach K, Joos H, Doose H et al (2005) SCN1A mutation analysis in myoclonic astatic epilepsy and severe idiopathic generalized epilepsy of infancy with generalized tonicclonic seizures. Neuropediatrics 36:210–213CrossRefPubMedGoogle Scholar
  11. Epi4K Consortium, Epilepsy Phenome/Genome Project, Allen AS, et al. (2013) De novo mutations in epileptic encephalopathies. Nature 501: 217–21Google Scholar
  12. Ghani Mikati A, , Abu Gheida I, , Shamseddine A, et al. (2013) Epileptic and electroencephalographic manifestations of guanidinoacetate-methyltransferase deficiency. Epileptic Disord 15(4):407–16Google Scholar
  13. Grosso S, Orrico A, Galli L et al (2007) SCN1A mutation associated with atypical Panayiotopoulos syndrome. Neurology 69:609–611CrossRefPubMedGoogle Scholar
  14. Guerrini R, Parrini E (2012) Epilepsy in Rett syndrome, and CDKL5- and FOXG1-gene-related encephalopathies. Epilepsia 53:2067–2078CrossRefPubMedGoogle Scholar
  15. Hahn A, Neubauer BA (2009) Sodium and potassium channel dysfunctions in rare and common idiopathic epilepsy syndromes. Brain Development 31:515–520CrossRefPubMedGoogle Scholar
  16. Harkin LA, McMahon JM, Iona X et al (2007) The spectrum of SCN1Arelated infantile epileptic encephalopathies. Brain 130:843–852CrossRefPubMedGoogle Scholar
  17. Huang X, Tian M, Hernandez CC et al (2012) The GABRG2 nonsense mutation, Q40X, associated with Dravet syndrome activated NMD and generated a truncated subunit that was partially rescued by aminoglycoside-induced stop codon read-through. Neurobiol Dis 48:115–123CrossRefPubMedPubMedCentralGoogle Scholar
  18. Jurecka A, Zikanova M, Tylki-Szymanska A et al (2008) Clinical, biochemical and molecular findings in seven Polish patients with adenylosuccinate lyase deficiency. Mol Genet Metab 94:435–442CrossRefPubMedGoogle Scholar
  19. Lemke, , Lal D, , Reinthaler EM, , Steiner I, et al. (2013) Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes. Nat Genet 45:1067–72Google Scholar
  20. Liao Y, Deprez L, Maljevic S et al (2010) Molecular correlates of age-dependent seizures in an inherited neonatal-infantile epilepsy. Brain 133:1403–1414CrossRefPubMedGoogle Scholar
  21. Maljevic S, Wuttke TV, Lerche H (2008) Nervous system KV7 disorders: breakdown of a subthreshold brake. J Physiol 586:1791–1801CrossRefPubMedPubMedCentralGoogle Scholar
  22. Mantegazza M, Gambardella A, Rusconi R et al (2005) Identification of an Nav1.1 sodium channel (SCN1A) loss-of-function mutation associated with familial simple febrile seizures. Proc Natl Acad Sci USA 102:18177–18182CrossRefPubMedPubMedCentralGoogle Scholar
  23. Mefford HC, Muhle H, Ostertag P et al (2010) Genome-wide copy number variation in epilepsy: novel susceptibility loci in idiopathic generalized and focal epilepsies. PLoS Genet 20(6):e100096–2Google Scholar
  24. Mirzaa GM, Paciorkowski AR, Marsh ED et al (2013) CDKL5: Patients usually present with atypical West syndrome, Rett syndrome with early onset epilepsy, or less specifiable epileptic encephalopathies. Pediatr Neurol 48:367–377CrossRefPubMedPubMedCentralGoogle Scholar
  25. Mullen SA, Marini C, Suls A et al (2011) Glucose transporter 1 deficiency as a treatable cause of myoclonic astatic epilepsy. Arch Neurol 68:1152–1155CrossRefPubMedGoogle Scholar
  26. Neubauer BA, Waldegger S, Heinzinger J et al (2008) KCNQ2 and KCNQ3 mutations contribute to different idiopathic epilepsy syndromes. Neurology 71:177–183CrossRefPubMedGoogle Scholar
  27. Oliveira R, Pereira C, Rodrigues F et al (2013) Pyridoxinedependent epilepsy due to antiquitin deficiency: achieving a favourable outcome. Epileptic Disord 15(4):400–406PubMedGoogle Scholar
  28. Paciorkowski AR, Thio LL, Dobyns WB (2011) Genetic and biologic classification of infantile spasms. Pediatr Neurol 45:355–367CrossRefPubMedPubMedCentralGoogle Scholar
  29. Pavone P, Spalice A, Polizzi A et al (2012) Ohtahara syndrome with emphasis on recent genetic discovery. Brain Development 34:459–468CrossRefPubMedGoogle Scholar
  30. Pérez-Dueñas B, Serrano M, Rebollo M et al (2013) Reversible lactic acidosis in a newborn with thiamine transporter-2 deficiency. Pediatrics 131:e1670–e1675CrossRefPubMedGoogle Scholar
  31. Poduri A, Chopra SS, Neilan EG et al (2012) Homozygous PLCB1 deletion associated with malignant migrating partial seizures in infancy. Epilepsia 53:e146–e150CrossRefPubMedGoogle Scholar
  32. Rosanoff MJ, Ottman R (2008) Penetrance of LGI1 mutations in autosomal dominant partial epilepsy with auditory features. Neurology 71:567–571CrossRefPubMedPubMedCentralGoogle Scholar
  33. Saitsu H, Tohyama J, Kumada T et al (2010) Dominant-negative mutations in alpha-II spectrin cause West syndrome with severe cerebral hypomyelination, spastic quadriplegia, and developmental delay. Am J Hum Genet 86:881–891CrossRefPubMedPubMedCentralGoogle Scholar
  34. Scheffer IE, Turner SJ, Dibbens LM et al (2008) Epilepsy and mental retardation limited to females: an under-recognized disorder. Brain 131:918–922CrossRefPubMedGoogle Scholar
  35. Shen J, Gilmore EC, Marshall CA et al (2010) Mutations in PNKP cause microcephaly, seizures and defects in DNA repair. Nat Genet 42:245–249CrossRefPubMedPubMedCentralGoogle Scholar
  36. Sisodiya SM, Mefford HC (2011) Genetic contribution to common epilepsies. Curr Opin Neurol 24:140–145CrossRefPubMedGoogle Scholar
  37. Steinfeld R, Grapp M, Kraetzner R et al (2009) Folate receptor alpha defect causes cerebral folate transport deficiency: a treatable neurodegenerative disorder associated with disturbed myelin metabolism. Am J Hum Genet 85:354–363CrossRefPubMedPubMedCentralGoogle Scholar
  38. Steinlein OK, Bertrand D (2010) Nicotinic receptor channelopathies and epilepsy. Pflugers Arch 460:495–503CrossRefPubMedGoogle Scholar
  39. Stogmann E, Lichtner P, Baumgartner C et al (2006) Idiopathic generalized epilepsy phenotypes associated with different EFHC1 mutations. Neurology 67:2029–2031CrossRefPubMedGoogle Scholar
  40. Suls A, Jaehn JA, Kecskés A et al (2013) De Novo Loss-of- Function Mutations in CHD2 Cause a Fever-Sensitive Myoclonic Epileptic Encephalopathy Sharing Features with Dravet Syndrome. Am J Hum Genet 93:967–975CrossRefPubMedPubMedCentralGoogle Scholar
  41. Suls A, Mullen SA, Weber YG et al (2009) Early-onset absence epilepsy caused by mutations in the glucose transporter GLUT1. Ann Neurol 66:415–419CrossRefPubMedGoogle Scholar
  42. Suzuki T, Miyamoto H, Nakahari T et al (2009) Efhc1 deficiency causes spontaneous myoclonus and increased seizure susceptibility. Hum Mol Genet 18:1099–1109CrossRefPubMedPubMedCentralGoogle Scholar
  43. Van Bogaert P, , Azizieh R, , Désir J, et al. (2007) Mutation of a potassium channel-related gene in progressive myoclonic epilepsy. Ann Neurol 61: 579–86Google Scholar
  44. Weber YG, Jacob M, Weber G, Lerche H (2008) A BFIS-like syndrome with late onset and febrile seizures: suggestive linkage to chromosome 16p11.2-16q12.1. Epilepsia 49: 1959–1964fGoogle Scholar
  45. Weckhuysen S, Ivanovic V, Hendrickx R et al (2013) Extending the KCNQ2 encephalopathy spectrum: Clinical and neuro imaging findings in 17 patients. Neurology 81:1697–1703CrossRefPubMedPubMedCentralGoogle Scholar
  46. Yamada K, Miura K, Hara K et al (2010) A wide spectrum of clinical and brain MRI findings in patients with SLC19A3 mutations. BMC Med Genet 11:17–1CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • B. Neubauer
    • 1
  • A. Hahn
    • 1
  1. 1.Universitätsklinikum Gießen und MarburgMarburg

Personalised recommendations