Curvelet Transform and Local Texture Based Image Forgery Detection

  • Muneer H. Al-Hammadi
  • Ghulam Muhammad
  • Muhammad Hussain
  • George Bebis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8034)

Abstract

In this paper, image forgery detection method based on the curvelet transform and local binary pattern (LBP) is proposed. First, a color image is converted into the chrominance space. Then, the curvelet transform is applied to the chrominance component to decompose it into several scale and orientation wedges. The LBP normalized histogram is calculated from each of the wedges. The final feature vector is obtained by fusing all the histograms. The proposed method is evaluated on three image forgery datasets and compared with some state of the art methods. Experimental results demonstrate the superiority of the proposed method over the compared methods. The detection accuracy of the proposed method is 93.4% 97.0 % and 94.2% on the CASIA TIDE v1.0, CASIA TIDE v2.0 and Columbia color databases, respectively.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Swaminathan, A., Wu, W., Liu, K.J.R.: Digital Image Forensics via Intrinsic Fingerprints. IEEE Trans. Information Forensics and Security 3(1), 101–117 (2008)CrossRefGoogle Scholar
  2. 2.
    Fridrich, J., Soukal, D., Lukas, J.: Detection of Copy-Move Forgery in Digital Images. In: Proceedings of Digital Forensic Research Workshop (August 2003)Google Scholar
  3. 3.
    Huang, Y., Lu, W., Sun, W., Long, D.: Improved DCT-based detection of copy-move forgery in images. Forensic Science International 206(1-3), 178–184 (2011)CrossRefGoogle Scholar
  4. 4.
    Li, G., Wu, Q., Tu, D., Sun, S.: A Sorted Neighborhood Approach for Detecting Duplicated Regions in Image Forgeries based on DWT and SVD. In: IEEE International Conference on Multimedia and Expo, ICME 2007, Beijing, pp. 1750–1753 (2007)Google Scholar
  5. 5.
    Muhammad, G., Hussain, M., Bebis, G.: Passive copy move image forgery detection using undecimated dyadic wavelet transform. Digital Investigation 9(1), 49–57 (2012)CrossRefGoogle Scholar
  6. 6.
    Amerini, I., Ballan, L., Caldelli, R., Del Bimbo, A., Serra, G.: A SIFT-based forensic method for copy-move attack detection and transformation recovery. IEEE Trans. Information Forensics and Security 6(3), 1099–1110 (2011)CrossRefGoogle Scholar
  7. 7.
    Ng, T.T., Chang, S.F.: A dataset of authentic and spliced image blocks. Technical Report 203-2004, Columbia University (2004), http://www.ee.columbia.edu/ln/dvmm/downloads/
  8. 8.
    Dong, J., Wang, W.: CASIA tampered image detection evaluation (TIDE) database, v1.0 and v2.0 (2011), http://forensics.idealtest.org/
  9. 9.
    Ng, T.T., Chang, S.F., Sun, Q.: Blind detection of photomontage using higher order statistics. In: IEEE Intl. Symposium Circuits and Systems, ISCAS, pp. 688–691 (2004)Google Scholar
  10. 10.
    Hsu, Y.F., Chang, S.F.: Detecting image splicing using geometry invariants and camera characteristics consistency. In: IEEE ICME 2006, pp. 549–552 (2006)Google Scholar
  11. 11.
    Shi, Y.Q., Chen, C., Chen, W.: A natural image model approach to splicing detection. In: ACM Multimedia & Security, MM&S 2007, pp. 51–62 (2007)Google Scholar
  12. 12.
    He, Z., Lu, W., Sun, W., Huang, J.: Digital image splicing detection based on Markov features in DCT and DWT domain. Pattern Recognition (2012), http://dx.doi.org/10.1016/j.patcog.2012.05.014
  13. 13.
    Wang, W., Dong, J., Tan, T.: Image tampering detection based on stationary distribution of Markov chain. In: IEEE Intl. Conference on Image Processing, ICIP 2010, pp. 2101–2104 (2010)Google Scholar
  14. 14.
    Zhao, X., Li, S., Wang, S., Li, J., Yang, K.: Optimal chroma-like channel design for passive image splicing detection. EURASIP Journal on Advances in Signal Processing (2012), doi:10.1186/1687-6180-2012-240 Google Scholar
  15. 15.
    Zhao, X., Li, J., Li, S., Wang, S.: Detecting digital image splicing in chroma spaces. In: Kim, H.-J., Shi, Y.Q., Barni, M. (eds.) IWDW 2010. LNCS, vol. 6526, pp. 12–22. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Starck, J.-L., Candès, E.J., Donoho, D.L.: The curvelet transform for image denoising. IEEE Transactions on Image Processing 11, 670–684 (2002)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ahonen, T., Hadid, A., Pietikainen, M.: Face Description with Local Binary Patterns: Application to Face Recognition. IEEE Trans. Pattern Analysis and Machine Intelligence 28(12), 2037–2041 (2006)CrossRefGoogle Scholar
  18. 18.
    Sun, Y., Todorovic, S., Goodison, S.: Local Learning Based Feature Selection for High Dimensional Data Analysis. IEEE Trans. Pattern Analysis and Machine Intelligence 32(9), 1610–1626 (2010)CrossRefGoogle Scholar
  19. 19.
    Chang, C.C., Lin, C.J.: LIBSVM - a library for support vector machine (2010), http://www.csie.ntu.edu.tw/~cjlin/libsvm

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Muneer H. Al-Hammadi
    • 1
  • Ghulam Muhammad
    • 1
  • Muhammad Hussain
    • 1
  • George Bebis
    • 2
  1. 1.College of Computer and Information SciencesKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Department of Computer Science and EngineeringUniversity of Nevada at RenoUSA

Personalised recommendations