Evaluating and Comparing of 3D Shape Descriptors for Object Recognition

  • Alexander Ceron
  • Flavio Prieto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8034)


In this work we show the results of a system for object recognition by using depth data. It is based on shape descriptors and PCA reduction. For obtaining the results, we evaluated different combination of three descriptors that are suitable for this work: Spin Images, VFH (Viewpoint Feature Histogram) and NARF (Normal Aligned Radial Feature). In addition, we created a method for extracting the NARF descriptor in order to obtain a global descriptor. The results show that the combination of descriptors can be used for object recognition in a database composed of point clouds obtained with a RGB-D sensor.


Point Cloud Object Recognition Shape Descriptor Spin Image Global Descriptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Flynn, P., Jain, A.: Surface classification: Hypothesis testing and parameter estimation. In: Computer Vision and Pattern Recognition (1988)Google Scholar
  2. 2.
  3. 3.
    Johnson, A.: Spin-Images: A Representation for 3D Surface Matching. PhD thesis, Robotics Institute, Carnegie Mellon University (1997)Google Scholar
  4. 4.
    Lai, K., Bo, L., Ren, X., Fox, D.: A large-scale hierarchical multi-view rgb-d object dataset. In: 2011 IEEE International Conference on Robotics and Automation, ICRA, pp. 1817–1824 (2011)Google Scholar
  5. 5.
    Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (fpfh) for 3d registration. In: The IEEE International Conference on Robotics and Automation, ICRA (2009)Google Scholar
  6. 6.
    Rusu, R., Bradski, G., Thibaux, R., Hsu, J.: Fast 3d recognition and pose using the viewpoint feature histogram. In: Intelligent Robots and Systems, IROS (2010)Google Scholar
  7. 7.
    Steder, B., Rusu, R.B., Konolige, K., Burgard, W.: Narf: 3d range image features for object recognition. In: Workshop on Defining and Solving Realistic Perception Problems in Personal Robotics at the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, IROS (2010)Google Scholar
  8. 8.
    Rusu, R.B., Holzbach, A., Blodow, N., Beetz, M.: Fast geometric point labeling using conditional random fields. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009 (2009)Google Scholar
  9. 9.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 91–110 (2004)CrossRefGoogle Scholar
  10. 10.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Rusu, R.B., Cousins, S.: 3D is here: Point Cloud Library (PCL). In: IEEE International Conference on Robotics and Automation, ICRA, Shanghai, China (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alexander Ceron
    • 1
    • 2
  • Flavio Prieto
    • 1
  1. 1.Universidad Nacional de ColombiaBogotáColombia
  2. 2.Universidad Militar Nueva GranadaBogotáColombia

Personalised recommendations