Moving Horizon Estimation of Pedestrian Interactions Based on Multiple Velocity Fields

  • Ana Portelo
  • Sandra Pacheco
  • Mário A. T. Figueiredo
  • João M. Lemos
  • Jorge S. Marques
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8034)

Abstract

This paper describes a model for the interaction between pedestrians in a scene. We consider a recently proposed model for isolated pedestrians in the scene and extend it by adding an interaction term that accounts for attractive/repulsive behaviors among pedestrians. The proposed model combines multiple velocity fields that represent typical motion regimes in the scene and a time-varying interaction term. The estimation of the active velocity field and interaction parameters is achieved by assuming that they remain constant within every instance of an analysis window that slides in time. This strategy is known as the Moving Horizon Estimation (MHE) method. The proposed algorithm is assessed both by using synthetic data and pedestrian trajectories extracted from video streams.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Turaga, P., Chellappa, R., Subrahmanian, V., Udrea, O.: Machine recognition of human activities: A survey. IEEE Trans. on Circuits and Systems for Video Technology 18(11), 1473–1488 (2008)CrossRefGoogle Scholar
  2. 2.
    Oliver, N., Rosario, B., Pentland, A.: A bayesian computer vision system for modeling human interactions. IEEE Trans. on Pattern Analysis and Machine Intelligence 22(8), 831–843 (2000)CrossRefGoogle Scholar
  3. 3.
    Suk, H.-I., Jain, A., Lee, S.-W.: A network of dynamic probabilistic models for human interaction analysis. IEEE Transactions on Circuits and Systems for Video Technology 21(7), 932–945 (2011)CrossRefGoogle Scholar
  4. 4.
    Nascimento, J., Figueiredo, M.A.T., Marques, J.: Activity recognition using mixture of vector fields. IEEE Trans. on Image Processing 22(5), 1712–1725 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Nascimento, J., Marques, J., Figueiredo, M.A.T.: Classification of complex pedestrian activities from trajectories. In: IEEE Int. Conf. Image Processing, pp. 3481–3484 (September 2010)Google Scholar
  6. 6.
    Helbing, D.: A mathematical model for the behavior of pedestrians. Behavioral Science (36), 298–310 (1991)Google Scholar
  7. 7.
    Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Physical Review (E51), 4282–4286 (1995)Google Scholar
  8. 8.
    Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social force model. In: IEEE Int. Conf. on Computer Vision and Pattern Recognition, pp. 935–942 (June 2009)Google Scholar
  9. 9.
    Zhang, Y., Qin, L., Yao, H., Huang, Q.: Abnormal crowd behavior detection based on social attribute-aware force model. In: IEEE Int. Conf. Image Processing, pp. 2689–2692 (September 2012)Google Scholar
  10. 10.
    Alessandri, A., Baglietto, M., Battistelli, G.: Moving-horizon state estimation for non-linear discrete-time systems: New stability results and approximation schemes. Automatica 44, 1753–1765 (2008)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Veenman, C.J., Reinders, M.J.T., Backer, E.: Resolving motion correspondence for densely moving points. IEEE Trans. on Pattern Analysis and Machine Intelligence 23, 54–72 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ana Portelo
    • 1
  • Sandra Pacheco
    • 1
  • Mário A. T. Figueiredo
    • 2
    • 4
  • João M. Lemos
    • 1
    • 4
  • Jorge S. Marques
    • 3
    • 4
  1. 1.INESC-IDPortugal
  2. 2.ITPortugal
  3. 3.ISRPortugal
  4. 4.ISTPortugal

Personalised recommendations