Mesh Generation from Layered Depth Images Using Isosurface Raycasting

  • Steffen Frey
  • Filip Sadlo
  • Thomas Ertl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8034)

Abstract

This paper presents an approach for the fast generation of meshes from Layered Depth Images (LDI), a representation that is independent of the underlying data structure and widely used in image-based rendering. LDIs can be quickly generated from high-quality, yet computationally expensive isosurface raycasters that are available for a wide range of different types of data. We propose a fast technique to extract meshes from one or several LDIs which can then be rendered for fast, yet high-quality analysis with comparatively low hardware requirements. To further improve quality, we also investigate mesh geometry merging and adaptive refinement, both for triangle and quad meshes. Quality and performance are evaluated using simulation data and analytic functions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Knoll, A.M., Wald, I., Hansen, C.D.: Coherent multiresolution isosurface ray tracing. Vis. Comput. 25, 209–225 (2009)CrossRefGoogle Scholar
  2. 2.
    Gamito, M.N., Maddock, S.C.: Ray casting implicit fractal surfaces with reduced affine arithmetic. Vis. Comput. 23, 155–165 (2007)CrossRefGoogle Scholar
  3. 3.
    Üffinger, M., Frey, S., Ertl, T.: Interactive high-quality visualization of higher-order finite elements. Comput. Graph. Forum 29, 337–346 (2010)CrossRefGoogle Scholar
  4. 4.
    Shade, J., Gortler, S., He, L.W., Szeliski, R.: Layered depth images. In: SIGGRAPH, pp. 231–242 (1998)Google Scholar
  5. 5.
    Lorensen, W., Cline, H.: Marching cubes: A high resolution 3D surface construction algorithm. Comput. Graph. 21, 163–169 (1987)CrossRefGoogle Scholar
  6. 6.
    Schaefer, S., Warren, J.: Dual marching cubes: primal contouring of dual grids. In: Comput. Graph. Forum, pp. 70–76 (2004)Google Scholar
  7. 7.
    Fryazinov, O., Pasko, A., Comninos, P.: Fast reliable interrogation of procedurally defined implicit surfaces using extended revised affine arithmetic. Comput. Graph. 34, 708–718 (2010)CrossRefGoogle Scholar
  8. 8.
    Remacle, J.F., Henrotte, F., Baudouin, T., Geuzaine, C., Béchet, E., Mouton, T., Marchandise, E.: A frontal delaunay quad mesh generator using the l ∞  norm. In: 20th Meshing Roundtable, pp. 455–472 (2012)Google Scholar
  9. 9.
    Wiley, D.F., Childs, H.R., Gregorski, B.F., Hamann, B., Joy, K.I.: Contouring curved quadratic elements. In: VisSym, pp. 167–176 (2003)Google Scholar
  10. 10.
    Pagot, C.A., Vollrath, J., Sadlo, F., Weiskopf, D., Ertl, T., Comba, J.: Interactive isocontouring of high-order surfaces. In: Scientific Visualization: Interactions, Features, Metaphors, vol. 2, pp. 276–291 (2011)Google Scholar
  11. 11.
    Nielson, G.M.: Dual marching cubes. In: IEEE Vis., pp. 489–496 (2004)Google Scholar
  12. 12.
    Dietrich, C., Scheidegger, C., Schreiner, J., Comba, J., Nedel, L., Silva, C.: Edge transformations for improving mesh quality of marching cubes. Trans. Visual. Comput. Graphics 15, 150–159 (2009)CrossRefGoogle Scholar
  13. 13.
    Bommes, D., Lévy, B., Pietroni, N., Puppo, E., Silva, C., Tarini, M., Zorin, D.: Quad meshing. In: Eurographics, pp. 159–182 (2012)Google Scholar
  14. 14.
    Zhou, Y., Chen, B., Kaufman, A.: Multiresolution tetrahedral framework for visualizing regular volume data. In: IEEE Vis., pp. 135–142 (1997)Google Scholar
  15. 15.
    Anderson, J., Bennett, J., Joy, K.: Marching diamonds for unstructured meshes. In: IEEE Vis. 2005, pp. 423–429 (2005)Google Scholar
  16. 16.
    Grosso, R., Ertl, T.: Progressive iso-surface extraction from hierarchical 3d meshes. Comput. Graph. Forum 17, 125–135 (1998)CrossRefGoogle Scholar
  17. 17.
    Westermann, R., Kobbelt, L., Ertl, T.: Real-time exploration of regular volume data by adaptive reconstruction of iso-surfaces. Vis. Comput. 15, 100–111 (1999)CrossRefGoogle Scholar
  18. 18.
    Dey, T., Levine, J.: Delaunay meshing of isosurfaces. In: Shape Modeling and Applications, pp. 241–250 (2007)Google Scholar
  19. 19.
    Schreiner, J., Scheidegger, C.E., Silva, C.T.: High-quality extraction of isosurfaces from regular and irregular grids. Trans. Visual. Comput. Graphics 12, 1205–1212 (2006)CrossRefGoogle Scholar
  20. 20.
    Scheidegger, C.E., Fleishman, S., Silva, C.T.: Triangulating point set surfaces with bounded error. In: EG Symposium on Geometry Processing, pp. 63–72 (2005)Google Scholar
  21. 21.
    Kobbelt, L.P., Botsch, M.: An interactive approach to point cloud triangulation. In: Eurographics (2000)Google Scholar
  22. 22.
    Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: SIGGRAPH, pp. 303–312 (1996)Google Scholar
  23. 23.
    Turk, G., Levoy, M.: Zippered polygon meshes from range images. In: SIGGRAPH, pp. 311–318 (1994)Google Scholar
  24. 24.
    Rocchini, C., Cignoni, P., Ganovelli, F., Montani, C., Pingi, P., Scopigno, R.: The marching intersections algorithm for merging range images. Vis. Comput. 20, 149–164 (2004)CrossRefGoogle Scholar
  25. 25.
    Held, M.: Fist: Fast industrial-strength triangulation of polygons. Technical report, Algorithmica (2000)Google Scholar
  26. 26.
    Sadlo, F., Üffinger, M., Pagot, C., Osmari, D., Comba, J., Ertl, T., Munz, C.D., Weiskopf, D.: Visualization of cell-based higher-order fields. Computing in Science and Engineering 13, 84–91 (2011)Google Scholar
  27. 27.
    Nelson, B., Kirby, R.M., Haimes, R.: GPU-Based Interactive Cut-Surface Extraction From High-Order Finite Element Fields. Trans. Visual. Comput. Graphics 17, 1803–1811 (2011)CrossRefGoogle Scholar
  28. 28.
    Rosenthal, P., Linsen, L.: Direct isosurface extraction from scattered volume data. In: EuroVis, pp. 99–106 (2006)Google Scholar
  29. 29.
    Ropinski, T., Prassni, J., Steinicke, F., Hinrichs, K.: Stroke-based transfer function design. In: SPBG, pp. 41–48 (2008)Google Scholar
  30. 30.
    LaMar, E., Pascucci, V.: A multi-layered image cache for scientific visualization. In: PVG, pp. 61–68 (2003)Google Scholar
  31. 31.
    Tikhonova, A., Correa, C., Ma, K.L.: Explorable images for visualizing volume data. In: PacificVis, pp. 177–184 (2010)Google Scholar
  32. 32.
    Schneiders, R.: Refining quadrilateral and hexahedral element meshes. In: 5th International Conference on Grid Generation in Computational Field Simulations, pp. 679–688 (1996)Google Scholar
  33. 33.
    Ebeida, M.S., Patney, A., Owens, J.D., Mestreau, E.: Isotropic conforming refinement of quadrilateral and hexahedral meshes using two-refinement templates. International Journal for Numerical Methods in Engineering 88, 974–985 (2011)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Knoll, A., Hijazi, Y., Kensler, A., Schott, M., Hansen, C.D., Hagen, H.: Fast ray tracing of arbitrary implicit surfaces with interval and affine arithmetic. Comput. Graph. Forum 28, 26–40 (2009)CrossRefGoogle Scholar
  35. 35.
    Marschner, S.R., Lobb, R.J.: An evaluation of reconstruction filters for volume rendering. In: IEEE Vis., pp. 100–107 (1994)Google Scholar
  36. 36.
    Cignoni, P., Rocchini, C., Scopigno, R.: Metro: Measuring error on simplified surfaces. Comput. Graph. Forum 17, 167–174 (1998)CrossRefGoogle Scholar
  37. 37.
    Etiene, T., Nonato, L.G., Scheidegger, C., Tierny, J., Peters, T.J., Pascucci, V., Kirby, R.M., Silva, C.T.: Topology verification for isosurface extraction. Trans. Visual. Comput. Graphics 18, 952–965 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Steffen Frey
    • 1
  • Filip Sadlo
    • 1
  • Thomas Ertl
    • 1
  1. 1.Visualization Research CenterUniversity of StuttgartGermany

Personalised recommendations