Advertisement

Baquara: A Holistic Ontological Framework for Movement Analysis Using Linked Data

  • Renato Fileto
  • Marcelo Krüger
  • Nikos Pelekis
  • Yannis Theodoridis
  • Chiara Renso
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8217)

Abstract

Movement understanding frequently requires further information and knowledge than what can be obtained from bare spatio-temporal traces. Despite recent progress in trajectory data management, there is still a gap between the spatio-temporal aspects and the semantics involved. This gap hinders trajectory analysis benefiting from growing collections of linked data, with well-defined and widely agreed semantics, already available on the Web. This article introduces Baquara, an ontology with rich constructs, associated with a system architecture and an approach to narrow this gap. The Baquara ontology functions as a conceptual framework for semantic enrichment of movement data with annotations based on linked data. The proposed architecture and approach reveal new possibilities for trajectory analysis, using database management systems and triple stores extended with spatial data and operators. The viability of the proposal and the expressiveness of the Baquara ontology and enabled queries are investigated in a case study using real sets of trajectories and linked data.

Keywords

Moving objects trajectories semantic enrichment linked data movement analysis ontology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Battle, M., Kolas, D.: Enabling the Geospacial Semantic Web with Parliament and GeoSPARQL. Semantic Web Journal 3(4), 355–370 (2012)Google Scholar
  2. 2.
    Bogorny, V., Renso, C., Aquino, A., Siqueira, F.L., Alvares, L.O.: CONSTAnT - A Conceptual Data Model for Semantic Trajectories of Moving Objects. Transactions in GIS 8(2) (2013)Google Scholar
  3. 3.
    Cohen, W.W., Ravikumar, P.D., Fienberg, S.E.: A Comparison of String Distance Metrics for Name-Matching Tasks. In: IIWeb, pp. 73–78 (2003)Google Scholar
  4. 4.
    Giannotti, F., Nanni, M., Pedreschi, D., Pinelli, F., Renso, C., Rinzivillo, S., Trasarti, R.: Unveiling the complexity of human movement by querying and mining massive trajectory data. The VLDB Journal 20(5), 695–719 (2011)CrossRefGoogle Scholar
  5. 5.
    Navarro, G.: A guided tour to approximate string matching. ACM Computing Surveys 33(1), 31–88 (2001)CrossRefGoogle Scholar
  6. 6.
    Kyzirakos, K., Karpathiotakis, M., Koubarakis, M.: Strabon: A Semantic Geospatial DBMS. In: Cudré-Mauroux, P., Heflin, J., Sirin, E., Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J.X., Hendler, J., Schreiber, G., Bernstein, A., Blomqvist, E. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 295–311. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Mountain, D., Raper, J.F.: Modelling human spatio-temporal behaviour: a challenge for location-based services. In: 6th Int. Conf. on GeoComputation, Brisbane, Australia, pp. 24–26 (2001)Google Scholar
  8. 8.
    Parent, C., Spaccapietra, S., Renso, C., Andrienko, G., Andrienko, N., Bogorny, V., Damiani, M.L., Gkoulalas-divanis, A., Macedo, J., Pelekis, N., Theodoridis, Y., Yan, Z.: Semantic trajectories modeling and analysis. ACM Computing Surveys 45 (2013)Google Scholar
  9. 9.
    Parent, C., Spaccapietra, S., Zimányi, E.: Conceptual Modeling for Traditional and Spatio-Temporal Applications: The MADS Approach. Springer (2006)Google Scholar
  10. 10.
    Pelekis, N., Frentzos, E., Giatrakos, N., Theodoridis, Y.: HERMES: aggregative LBS via a trajectory DB engine. In: SIGMOD Conf., pp. 1255–1258 (2008)Google Scholar
  11. 11.
    Renso, C., Baglioni, M., de Macedo, J.A.F., Trasarti, R., Wachowicz, M.: How you move reveals who you are: understanding human behavior by analyzing trajectory data. Knowledge and Information System Journal (KAIS), 1–32 (June 2012)Google Scholar
  12. 12.
    Spaccapietra, S., Parent, C., Damiani, M.L., de Macedo, J.A., Porto, F., Vangenot, C.: A conceptual view on trajectories. Data and Knowledge Engineering 65(1), 126–146 (2008)CrossRefGoogle Scholar
  13. 13.
    Yan, Z., Macedo, J., Parent, C., Spaccapietra, S.: Trajectory Ontologies and Queries. Transactions in GIS, 12(suppl. 1), 75–91 (2008)Google Scholar
  14. 14.
    Yao, B., Li, F., Hadjieleftheriou, M., Hou, K.: Approximate string search in spatial databases. In: Int. IEEE Conf. on Data Engineering (ICDE), pp. 545–556 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Renato Fileto
    • 1
  • Marcelo Krüger
    • 2
  • Nikos Pelekis
    • 3
  • Yannis Theodoridis
    • 4
  • Chiara Renso
    • 5
  1. 1.PPGCC/INE - CTCFederal University of Santa CatarinaFlorianópolisBrazil
  2. 2.CTTMarUniversity of Itajaí Valley (UNIVALI)São JoséBrazil
  3. 3.Department of Statistics & Insurance ScienceUniversity of PiraeusGreece
  4. 4.Department of InformaticsUniversity of PiraeusGreece
  5. 5.KDDLabIST/CNRPisaItaly

Personalised recommendations