Semantic-Based Mappings

  • Giansalvatore Mecca
  • Guillem Rull
  • Donatello Santoro
  • Ernest Teniente
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8217)


Data translation consists of the task of moving data from a source database to a target database. This task is usually performed by developing mappings, i.e., executable transformations from the source to the target schema. However, it is often the case that a richer description of the target database semantics is available under the form of a conceptual schema. We investigate how the mapping process changes when such a rich conceptualization of the target database is available. As a major contribution, we develop a translation algorithm that automatically rewrites a mapping from the source database schema to the target conceptual schema into an equivalent mapping from the source schema to the underlying target database schema. Experiments show that our approach scales nicely to complex conceptual schemas and large databases.


Conceptual Schema Global Schema Integrity Constraint Target Schema Relation Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    An, Y., Borgida, A., Miller, R., Mylopoulos, J.: A Semantic Approach to Discovering Schema Mapping Expressions. In: ICDE, pp. 206–215 (2007)Google Scholar
  2. 2.
    An, Y., Song, I.-Y.: Discovering semantically similar associations (sesa) for complex mappings between conceptual models. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER 2008. LNCS, vol. 5231, pp. 369–382. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Beeri, C., Vardi, M.: A Proof Procedure for Data Dependencies. J.ACM (1984)Google Scholar
  4. 4.
    Calì, A., Calvanese, D., De Giacomo, G., Lenzerini, M.: Data integration under integrity constraints. Inf. Syst. 29(2), 147–163 (2004)CrossRefGoogle Scholar
  5. 5.
    Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R.: View-based query answering in description logics: Semantics and complexity. J. Comput. Syst. Sci. 78(1), 26–46 (2012)CrossRefzbMATHGoogle Scholar
  6. 6.
    Ceri, S., Gottlob, G., Tanca, L.: What you Always Wanted to Know About Datalog (And Never Dared to Ask). IEEE TKDE 1(1), 146–166 (1989)Google Scholar
  7. 7.
    Deutsch, A., Tannen, V.: Optimization properties for classes of conjunctive regular path queries. In: Ghelli, G., Grahne, G. (eds.) DBPL 2001. LNCS, vol. 2397, pp. 21–39. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Fagin, R., Kolaitis, P., Miller, R., Popa, L.: Data Exchange: Semantics and Query Answering. TCS 336(1), 89–124 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fagin, R., Kolaitis, P., Nash, A., Popa, L.: Towards a Theory of Schema-Mapping Optimization. In: PODS, pp. 33–42 (2008)Google Scholar
  10. 10.
    Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.C.: Composing schema mappings: Second-order dependencies to the rescue. ACM TODS 30(4), 994–1055 (2005)CrossRefGoogle Scholar
  11. 11.
    Lenzerini, M.: Data integration: a Theoretical Perspective. In: PODS (2002)Google Scholar
  12. 12.
    Marnette, B., Mecca, G., Papotti, P.: Scalable data exchange with functional dependencies. PVLDB 3(1), 105–116 (2010)Google Scholar
  13. 13.
    Mecca, G., Papotti, P., Raunich, S.: Core Schema Mappings. In: SIGMOD (2009)Google Scholar
  14. 14.
    Mecca, G., Papotti, P., Raunich, S.: Core Schema Mappings: Scalable Core Computations in Data Exchange. Inf. Syst. 37(7), 677–711 (2012)CrossRefGoogle Scholar
  15. 15.
    Miller, R.J., Haas, L.M., Hernandez, M.A.: Schema Mapping as Query Discovery. In: VLDB, pp. 77–99 (2000)Google Scholar
  16. 16.
    Nash, A., Bernstein, P.A., Melnik, S.: Composition of mappings given by embedded dependencies. ACM Trans. Database Syst. 32(1), 4 (2007)CrossRefGoogle Scholar
  17. 17.
    Olivé, A.: Conceptual modeling of information systems. Springer (2007)Google Scholar
  18. 18.
    Poggi, A., Lembo, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R.: Linking data to ontologies. J. Data Semantics 10, 133–173 (2008)Google Scholar
  19. 19.
    Popa, L., Velegrakis, Y., Miller, R.J., Hernandez, M.A., Fagin, R.: Translating Web Data. In: VLDB, pp. 598–609 (2002)Google Scholar
  20. 20.
    Queralt, A., Teniente, E.: Reasoning on UML class diagrams with OCL constraints. In: Embley, D.W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215, pp. 497–512. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Rivero, C.R., Hernández, I., Ruiz, D., Corchuelo, R.: Generating SPARQL executable mappings to integrate ontologies. In: Jeusfeld, M., Delcambre, L., Ling, T.-W. (eds.) ER 2011. LNCS, vol. 6998, pp. 118–131. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Sterling, L., Shapiro, E.Y.: The Art of Prolog: Advanced Programming Techniques. MIT Press (1994)Google Scholar
  23. 23.
    ten Cate, B., Chiticariu, L., Kolaitis, P., Tan, W.C.: Laconic Schema Mappings: Computing Core Universal Solutions by Means of SQL Queries. PVLDB 2(1), 1006–1017 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Giansalvatore Mecca
    • 1
  • Guillem Rull
    • 2
  • Donatello Santoro
    • 1
    • 3
  • Ernest Teniente
    • 2
  1. 1.Università della BasilicataPotenzaItaly
  2. 2.Universitat Politècnica de CatalunyaBarcelonaSpain
  3. 3.Università Roma TreRomaItaly

Personalised recommendations