Improving Business Process Intelligence with Object State Transition Events

  • Nico Herzberg
  • Andreas Meyer
  • Oleh Khovalko
  • Mathias Weske
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8217)


During the execution of business processes several events happen that are recorded in the company’s information system. These events deliver insights into process executions so that process monitoring and analysis can be performed resulting, for instance, in prediction of upcoming process steps or the analysis of the runtime of single steps. While event capturing is trivial when a process engine with integrated logging capabilities is used, manual process execution environments do not provide automatic logging of events, so that typically external devices, like bar code scanners, have to be used. As experience shows, these manual steps are error-prone and induce additional work. Therefore, we use object state transitions as additional monitoring information, so-called object state transition events. Based on these object state transition events, we reason about the enablement and termination of activities and provide the basis for process analysis in terms of a large event log.


Business Process Management Events Data Process Monitoring BPMN 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management. Circuits Systems and Computers 8, 21–66 (1998)CrossRefGoogle Scholar
  2. 2.
    van der Aalst, W.M.P.: Process mining: Overview and Opportunities. ACM Transactions on Management Information Systems (TMIS) 3(2), 7:1–7:17 (2012)Google Scholar
  3. 3.
    Azvine, B., Cui, Z., Nauck, D., Majeed, B.: Real Time Business Intelligence for the Adaptive Enterprise. In: CEC/EEE, p. 29. IEEE (2006)Google Scholar
  4. 4.
    Eshuis, R., Van Gorp, P.: Synthesizing Object Life Cycles from Business Process Models. In: Atzeni, P., Cheung, D., Ram, S. (eds.) ER 2012 Main Conference 2012. LNCS, vol. 7532, pp. 307–320. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Grigori, D., Casati, F., Castellanos, M., Dayal, U., Sayal, M., Shan, M.: Business Process Intelligence. Computers in Industry 53(3), 321–343 (2004)CrossRefGoogle Scholar
  6. 6.
    Herzberg, N., Kunze, M., Rogge-Solti, A.: Towards Process Evaluation in Non-automated Process Execution Environments. In: ZEUS, pp. 97–103 (2012)Google Scholar
  7. 7.
    Herzberg, N., Meyer, A.: Improving Process Monitoring and Progress Prediction with Data State Transition Events. In: ZEUS (2013)Google Scholar
  8. 8.
    Herzberg, N., Meyer, A., Weske, M.: An Event Processing Platform for Business Process Management. In: Gaševic, D., Hatala, M., Motahari Nezhad, H.R., Reichert, M. (eds.) Proceedings of the 17th IEEE International Enterprise Distributed Object Computing Conference, pp. 107–116. IEEE Computer Press (September 2013)Google Scholar
  9. 9.
    Künzle, V., Reichert, M.: PHILharmonicFlows: Towards a Framework for Object-aware Process Management. Journal of Software Maintenance 23(4), 205–244 (2011)CrossRefGoogle Scholar
  10. 10.
    Küster, J.M., Ryndina, K., Gall, H.C.: Generation of Business Process Models for Object Life Cycle Compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 165–181. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Liu, R., Wu, F.Y., Kumaran, S.: Transforming Activity-Centric Business Process Models into Information-Centric Models for SOA Solutions. J. Database Manag. 21(4), 14–34 (2010)CrossRefGoogle Scholar
  12. 12.
    Lohmann, N.: Compliance by design for artifact-centric business processes. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 99–115. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Meyer, A., Polyvyanyy, A., Weske, M.: Weak Conformance of Process Models with respect to Data Objects. In: ZEUS, pp. 74–80 (2012)Google Scholar
  14. 14.
    Meyer, A., Smirnov, S., Weske, M.: Data in Business Processes. EMISA Forum 31(3), 5–31 (2011)Google Scholar
  15. 15.
    Meyer, A., Pufahl, L., Fahland, D., Weske, M.: Modeling and Enacting Complex Data Dependencies in Business Processes. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 171–186. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Motahari-Nezhad, H.R., Saint-Paul, R., Casati, F., Benatallah, B.: Event correlation for process discovery from web service interaction logs. VLDB Journal 20(3), 417–444 (2011)CrossRefGoogle Scholar
  17. 17.
    Murata, T.: Petri nets: Properties, Analysis and Applications. Proceedings of the IEEE 77(4), 541–580 (1989)CrossRefGoogle Scholar
  18. 18.
    Mutschler, B., Bumiller, J., Reichert, M.: An Approach to Quantify the Costs of Business Process Intelligence. In: EMISA, pp. 152–163 (2005)Google Scholar
  19. 19.
    Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specification. IBM Systems Journal 42(3), 428–445 (2003)CrossRefGoogle Scholar
  20. 20.
    Nooijen, E.H.J., van Dongen, B.F., Fahland, D.: Automatic Discovery of Data-Centric and Artifact-Centric Processes. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops 2012. LNBIP, vol. 132, pp. 316–327. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    OMG: Business Process Model and Notation (BPMN), Version 2.0 (2011)Google Scholar
  22. 22.
    Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB Journal 10 (2001)CrossRefGoogle Scholar
  23. 23.
    Weske, M.: Business Process Management: Concepts, Languages, Architectures, 2nd edn. Springer (2012)Google Scholar
  24. 24.
    Yang, X., Procopiuc, C.M., Srivastava, D.: Summarizing Relational Databases. VLDB Endowment 2(1), 634–645 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nico Herzberg
    • 1
  • Andreas Meyer
    • 1
  • Oleh Khovalko
    • 1
  • Mathias Weske
    • 1
  1. 1.Hasso Plattner InstituteUniversity of PotsdamPotsdamGermany

Personalised recommendations