Advertisement

Collaborative Sparse Representation in Dissimilarity Space for Classification of Visual Information

  • Ilias Theodorakopoulos
  • George Economou
  • Spiros Fotopoulos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8033)

Abstract

In this work we perform a thorough evaluation of the most popular CR-based classification scheme, the SRC, on the task of classification in dissimilarity space. We examine the performance utilizing a large set of public domain dissimilarity datasets mainly derived from classification problems relevant to visual information. We show that CR-based methods can exhibit remarkable performance in challenging situations characterized by extreme non-metric and non-Euclidean behavior, as well as limited number of available training samples per class. Furthermore, we investigate the structural qualities of a dataset necessitating the use of such classifiers. We demonstrate that CR-based methods have a clear advantage on dissimilarity data stemming from extended objects, manifold structures or a combination of these qualities. We also show that the induced sparsity during CR, is of great significance to the classification performance, especially in cases with small representative sets in the training data and large number of classes.

Keywords

Dynamic Time Warping Dissimilarity Matrix Manifold Structure Human Action Recognition Graph Edit Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bellman, R.: Dynamic Programming. Princeton University Press (1957)Google Scholar
  2. 2.
    Bunke, H., Buhler, U.: Applications of approximate string matching to 2D shape recogni-tion. Pattern Recognition 26(12), 1797–1812 (1993)CrossRefGoogle Scholar
  3. 3.
    Bunke, H.: On a relation between graph edit distance and maximum common subgraph. Pattern Recognition Letters 18(8), 689–694 (1997)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cox, T.F., Cox, M.A.A.: Multidimensional Scaling. Chapman & Hall, London (2001)zbMATHGoogle Scholar
  5. 5.
    Duin, R.P.W., Pękalska, E.: Non-Euclidean Dissimilarities: Causes and Informativeness. In: Hancock, E.R., Wilson, R.C., Windeatt, T., Ulusoy, I., Escolano, F. (eds.) SSPR & SPR 2010. LNCS, vol. 6218, pp. 324–333. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Duin, R.P.W., Loog, M., Pękalska, E.z., Tax, D.M.J.: Feature-Based Dissimilarity Space Classification. In: Ünay, D., Çataltepe, Z., Aksoy, S. (eds.) ICPR 2010. LNCS, vol. 6388, pp. 46–55. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Elhamifar, E., Sapiro, G., et al.: Finding Exemplars from Pairwise Dissimilarities via Simultaneous Sparse Recovery. In: Advances in Neural Information Processing Systems (2012)Google Scholar
  8. 8.
    Fang, S.C., Chan, H.L.: Human Identification by quantifying similarity and dissimilarity in electro-cardiogram phase space. Pattern Recognition 42, 1824–1831 (2009)CrossRefGoogle Scholar
  9. 9.
    Fotopoulou, F., Theodorakopoulos, I., Economou, G.: Fusion in Phase Space for Shape Retrieval. In: EUSIPCO (2011)Google Scholar
  10. 10.
    Fotopoulou, F., Laskaris, N., Economou, G., Fotopoulos, S.: Advanced Leaf Image Retrieval via Multidimensional Embedding Sequence Similarity (MESS) Method. Pattern Analysis and Applications (2011)Google Scholar
  11. 11.
    Friedman, J.H., Rafsky, L.C.: Multivariate Generalizations of the Wald-Wolfowitz and Smirnov Two-Sample Tests. Annals of Statistics 7(4), 697–717 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Goldfarb, L.: A unified approach to pattern recognition. Pattern Recognition 17, 575–582 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Graepel, T., Herbrich, R., Bollmann-Sdorra, P., Obermayer, K.: Classification on pairwise proximity data. Advances in Neural Information System Processing 11, 438–444 (1999)Google Scholar
  14. 14.
    Graepel, T., Herbrich, R., Schölkopf, B., Smola, A., Bartlett, P., Muller, K.R., Obermayer, K., Williamson, R.: Classification on proximity data with LP-machines. In: ICANN, pp. 304–309 (1999)Google Scholar
  15. 15.
    Hammer, B., Mokbel, B., Schleif, F.-M., Zhu, X.: Prototype-Based Classification of Dissimilarity Data. In: Gama, J., Bradley, E., Hollmén, J. (eds.) IDA 2011. LNCS, vol. 7014, pp. 185–197. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.J.: Comparing images using the Hausdorff distance. PAMI 15(9), 850–863 (1993)CrossRefGoogle Scholar
  17. 17.
    Jacobs, D., Weinshall, D., Gdalyahu, Y.: Classification with Non-Metric Distances: Image Retrieval and Class Representation. IEEE TPAMI 22(6), 583–600 (2000)CrossRefGoogle Scholar
  18. 18.
    Laub, J., Roth, V., Buhmannb, J.M., Müller, K.R.: On the information and representation of non-Euclidean pairwise data. Pattern Recognition, 1815–182639 (2006)Google Scholar
  19. 19.
    Lichtenauer, J., Hendriks, E.A., Reinders, M.J.T.: Sign Language Recognition by Combin-ing Statistical DTW and Independent Classification. PAMI 30, 2040–2046 (2008)CrossRefGoogle Scholar
  20. 20.
    Pekalska, E., Duin, R.P.W., Paclik, P.: Prototype selection for dissimilarity-based classifiers. Pattern Recognition 39(2), 189–208 (2006)CrossRefzbMATHGoogle Scholar
  21. 21.
    Pekalska, E., Duin, R.P.W.: The dissimilarity representation for pattern recognition. World Scientific (2005)Google Scholar
  22. 22.
    Plasencia-Calaña, Y., Orozco-Alzate, M., et al.: Selecting feature lines in generalized dissimilarity representations for pattern recognition. Digital Signal Processing (2012)Google Scholar
  23. 23.
    Schleif, F.-M., Zhu, X., Hammer, B.: A Conformal Classifier for Dissimilarity Data. AIAI (2), 234–243 (2012)Google Scholar
  24. 24.
    Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear component analysis as a kernel eigen-value problem. Neural Computation 10, 1299–1319 (1998)CrossRefGoogle Scholar
  25. 25.
    Castrodad, A., Sapiro, G.: Sparse Modeling of Human Actions from Motion Imagery. Int. J. Comput. Vision 100, 1–15 (2012)CrossRefGoogle Scholar
  26. 26.
    Theodorakopoulos, I., Kastaniotis, D., Economou, G., Fotopoulos, S.: Pose-based Human Action Recognition via Sparse Representation in Dissimilarity Space. J. Vis. Commun. Image R (2013)Google Scholar
  27. 27.
    Torgerson, W.S.: Multidimensional scaling: I. Theory and method. Psychometrika 17, 401–419 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Wilson, R., Hancock, E.: Spherical embedding and classification. In: SSPR (2010)Google Scholar
  29. 29.
    Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust Face Recognition via Sparse Representation. PAMI 31, 210–227 (2009)CrossRefGoogle Scholar
  30. 30.
    Xu, W., Wilson, R.C., Hancock, E.R.: Determining the Cause of Negative Dissimilarity Eigenvalues. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) CAIP 2011, Part I. LNCS, vol. 6854, pp. 589–597. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  31. 31.
    Xu, W., Wilson, R.C., Hancock, E.R.: Determining the Cause of Negative Dissimilarity Ei-genvalues. In: CAIP (2011)Google Scholar
  32. 32.
    Zhag, L., Yang, M., Feng, X.: Sparse representation or collaborative representation: Which helps face recognition? In: ICCV (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ilias Theodorakopoulos
    • 1
  • George Economou
    • 1
  • Spiros Fotopoulos
    • 1
  1. 1.Electronics Laboratory, Department of PhysicsUniversity of PatrasPatrasGreece

Personalised recommendations