Scene Perception and Recognition in Industrial Environments for Human-Robot Interaction

  • Nikhil Somani
  • Emmanuel Dean-León
  • Caixia Cai
  • Alois Knoll
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8033)

Abstract

In this paper, a scene perception and recognition module aimed at use in typical industrial scenarios is presented. The major contribution of this work lies in a 3D object detection, recognition and pose estimation module, which can be trained using CAD models and works for noisy data, partial views and in cluttered scenes. This algorithm was qualitatively and quantitatively compared with other state-of-art algorithms. Scene perception and recognition is an important aspect in the design of intelligent robotic systems which can adapt to unstructured and rapidly changing environments. This work has been used and evaluated in several experiments and demonstration scenarios for autonomous process plan execution, human-robot interaction and co-operation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Scovanner, P., Ali, S., Shah, M.: A 3-dimensional sift descriptor and its application to action recognition. In: Proceedings of the 15th International Conference on Multimedia, MULTIMEDIA 2007, pp. 357–360. ACM, New York (2007)Google Scholar
  2. 2.
    Sipiran, I., Bustos, B.: Harris 3d: a robust extension of the harris operator for interest point detection on 3d meshes. Vis. Comput. 27, 963–976 (2011)CrossRefGoogle Scholar
  3. 3.
    Zhong, Y.: Intrinsic shape signatures: A shape descriptor for 3d object recognition. In: Computer Vision Workshops (ICCV Workshops), pp. 689–696 (2009)Google Scholar
  4. 4.
    Rusu, R.B., Bradski, G., Thibaux, R., Hsu, J.: Fast 3d recognition and pose using the viewpoint feature histogram. In: Intelligent Robots and Systems (IROS), pp. 2155–2162. IEEE (2010)Google Scholar
  5. 5.
    Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (fpfh) for 3d registration. In: Robotics and Automation (ICRA), pp. 3212–3217. IEEE (2009)Google Scholar
  6. 6.
    Hu, G.: 3-d object matching in the hough space. In: IEEE International Conference on Systems, Man and Cybernetics, Intelligent Systems for the 21st Century, vol. 3, pp. 2718–2723 (1995)Google Scholar
  7. 7.
    Schnabel, R., Wessel, R., Wahl, R., Klein, R.: Shape recognition in 3d point-clouds. In: Skala, V. (ed.) The 16th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2008. UNION Agency-Science Press (2008)Google Scholar
  8. 8.
    Schnabel, R., Wahl, R., Klein, R.: Efficient ransac for point-cloud shape detection. Computer Graphics Forum 26, 214–226 (2007)CrossRefGoogle Scholar
  9. 9.
    Papazov, C., Haddadin, S., Parusel, S., Krieger, K., Burschka, D.: Rigid 3D geometry matching for grasping of known objects in cluttered scenes. International Journal of Robotic Research 31, 538–553 (2012)CrossRefGoogle Scholar
  10. 10.
    Papazov, C., Burschka, D.: An efficient ransac for 3d object recognition in noisy and occluded scenes. In: Proceedings of the 10th Asian Conference on Computer Vision - Volume Part I, pp. 135–148 (2011)Google Scholar
  11. 11.
    Hastie, T., Tibshirani, R., Friedman, J.: 14.3.12 Hierarchical clustering The Elements of Statistical Learning, 2nd edn. Springer, New York (2009) ISBN 0-387-84857-6CrossRefGoogle Scholar
  12. 12.
    Gonzalez, R.C., Woods, R.: Digital Image Processing, 2nd edn. Prentice Hall, New Jersey (2002)Google Scholar
  13. 13.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23, 1222–1239 (2001)CrossRefGoogle Scholar
  14. 14.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 1124–1137 (2004)CrossRefGoogle Scholar
  15. 15.
    Delong, A., Osokin, A., Isack, H., Boykov, Y.: Fast approximate energy minimization with label costs. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2010), pp. 2173–2180 (2010)Google Scholar
  16. 16.
    Delong, A., Osokin, A., Isack, H.N., Boykov, Y.: Fast approximate energy minimization with label costs. Int. J. Comput. Vision 96, 1–27 (2012)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Leonardis, A., Gupta, A., Bajcsy, R.: Segmentation of range images as the search for geometric parametric models. Int. J. Comput. Vision 14, 253–277 (1995)CrossRefGoogle Scholar
  18. 18.
    Boros, E., Hammer, P.L.: Pseudo-boolean optimization. Discrete Appl. Math. 123, 155–225 (2002)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Rother, C., Kolmogorov, V., Lempitsky, V., Szummer, M.: Optimizing binary mrfs via extended roof duality. In: Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8 (2007)Google Scholar
  20. 20.
    Barequet, G., Har-Peled, S.: Efficiently approximating the minimum-volume bounding box of a point set in three dimensions. J. Algorithms 38, 91–109 (2001)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Richtsfeld, A., Morwald, T., Prankl, J., Zillich, M., Vincze, M.: Segmentation of unknown objects in indoor environments. In: Intelligent Robots and Systems (IROS 2012), pp. 4791–4796 (2012)Google Scholar
  22. 22.
    Fikes, R.E., Nilsson, N.J.: Strips: A new approach to the application of theorem proving to problem solving. Technical Report 43R, AI Center, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, SRI Project 8259 (1971)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nikhil Somani
    • 1
  • Emmanuel Dean-León
    • 2
  • Caixia Cai
    • 1
  • Alois Knoll
    • 1
  1. 1.Fakultät für InformatikTechnische Universität MünchenGarching bei MünchenGermany
  2. 2.Cyber-Physical Systemsfortiss - An-Institut der Technischen Universität MünchenMünchenGermany

Personalised recommendations