A Solution to the Similarity Registration Problem of Volumetric Shapes

  • Wanmu Liu
  • Sasan Mahmoodi
  • Michael J. Bennett
  • Tom Havelock
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8033)


This paper provides a novel solution to the volumetric similarity registration problem usually encountered in statistical study of shapes and shape-based image segmentation. Here, shapes are implicitly represented by characteristic functions (CFs). By mapping shapes to a spherical coordinate system, shapes to be registered are projected to unit spheres and thus, rotation and scale parameters can be conveniently calculated. Translation parameter is computed using standard phase correlation technique. The method goes through intensive tests and is shown to be fast, robust to noise and initial poses, and suitable for a variety of similarity registration problems including shapes with complex structures and various topologies.


similarity registration volumetric shapes characteristic functions registration of lungs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bresson, X., Vandergheynst, P., Thiran, J.: A variational model for object segmentation using boundary information and shape prior driven by the mumford-shah functional. International Journal of Computer Vision 68, 145–162 (2006)CrossRefGoogle Scholar
  2. 2.
    Huang, X., Paragios, N., Metaxas, D.: Shape registration in implicit spaces using information theory and free form deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 1303–1318 (2006)CrossRefGoogle Scholar
  3. 3.
    Paragios, N., Rousson, M., Ramesh, V.: Non-rigid registration using distance functions. Computer Vision and Image Understanding 89, 142–165 (2003)CrossRefzbMATHGoogle Scholar
  4. 4.
    Chen, Y., Tagare, H., Thiruvenkadam, S., Huang, F., Wilson, D., Gopinath, K., Briggs, R., Geiser, E.: Using prior shapes in geometric active contours in a variational framework. International Journal of Computer Vision 50, 315–328 (2002)CrossRefzbMATHGoogle Scholar
  5. 5.
    Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations. Journal of Computational Physics 79, 12–49 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Besl, P., McKay, N.: A method for registration of 3-d shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14, 239–256 (1992)CrossRefGoogle Scholar
  7. 7.
    Gelfand, N., Mitra, N., Guibas, L., Pottmann, H.: Robust global registration. In: Proceedings of the Third Eurographics Symposium on Geometry Processing, p. 197. Eurographics Association (2005)Google Scholar
  8. 8.
    Breitenreicher, D., Schnörr, C.: Robust 3d object registration without explicit correspondence using geometric integration. Machine Vision and Applications 21, 601–611 (2010)CrossRefGoogle Scholar
  9. 9.
    Al-Huseiny, M., Mahmoodi, S., Nixon, M.: Robust rigid shape registration method using a level set formulation. In: International Symposium in Visual Computing, pp. 252–261 (2010)Google Scholar
  10. 10.
    Diebel, J.: Representing attitude: Euler angles, unit quaternions, and rotation vectors. Matrix (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Wanmu Liu
    • 1
  • Sasan Mahmoodi
    • 1
  • Michael J. Bennett
    • 2
  • Tom Havelock
    • 2
    • 3
  1. 1.School of Electronics and Computer ScienceUniversity of SouthamptonUK
  2. 2.Southampton NIHR Respiratory Biomedical Research UnitSouthampton University Hospital NHS Foundation TrustUK
  3. 3.Faculty of MedicineUniversity of SouthamptonUK

Personalised recommendations