Evaluation of Rendering Algorithms Using Position-Dependent Scene Properties

  • Claudius Jähn
  • Benjamin Eikel
  • Matthias Fischer
  • Ralf Petring
  • Friedhelm Meyer auf der Heide
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8033)


In order to evaluate the efficiency of algorithms for real-time 3D rendering, different properties like rendering time, occluded triangles, or image quality, need to be investigated. Since these properties depend on the position of the camera, usually some camera path is chosen, along which the measurements are performed. As those measurements cover only a small part of the scene, this approach hardly allows drawing conclusions regarding the algorithm’s properties at arbitrary positions in the scene. The presented method allows the systematic and position-independent evaluation of rendering algorithms. It uses an adaptive sampling approach to approximate the distribution of a property (like rendering time) for all positions in the scene. This approximation can be visualized to produce an intuitive impression of the algorithm’s behavior or be statistically analyzed for objectively rating and comparing algorithms. We demonstrate our method by evaluating performance aspects of a known occlusion culling algorithm.


Property Function Global Approximation Temporal Coherence Adaptive Sampling Render Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mattausch, O., Bittner, J., Wimmer, M.: CHC++: Coherent hierarchical culling revisited. Computer Graphics Forum 27, 221–230 (2008)CrossRefGoogle Scholar
  2. 2.
    Chamberlain, B., DeRose, T., Lischinski, D., Salesin, D., Snyder, J.: Fast rendering of complex environments using a spatial hierarchy. In: Proceedings of Graphics Interface 1996, pp. 132–141.Canadian Information Processing Society (1996)Google Scholar
  3. 3.
    Wand, M., Fischer, M., Peter, I., Meyer auf der Heide, F., Straßer, W.: The randomized z-buffer algorithm: interactive rendering of highly complex scenes. In: Proceedings of SIGGRAPH 2001, pp. 361–370. ACM (2001)Google Scholar
  4. 4.
    Meruvia-Pastor, O.E.: Visibility preprocessing using spherical sampling of polygonal patches. In: Short Presentations of Eurographics 2002 (2002)Google Scholar
  5. 5.
    Sander, P.V., Nehab, D., Barczak, J.: Fast triangle reordering for vertex locality and reduced overdraw. ACM Transactions on Graphics 26, Article No.: 89 (2007)Google Scholar
  6. 6.
    Li, L., Yang, X., Xiao, S.: Efficient visibility projection on spherical polar coordinates for shadow rendering using geometry shader. In: IEEE International Conference on Multimedia and Expo. 2008, pp. 1005–1008 (2008)Google Scholar
  7. 7.
    Zhang, H., Manocha, D., Hudson, T., Hoff III, K.E.: Visibility culling using hierarchical occlusion maps. In: Proceedings of SIGGRAPH 1997, pp. 77–88. ACM Press/Addison-Wesley Publishing Co. (1997)Google Scholar
  8. 8.
    Bittner, J., Wimmer, M., Piringer, H., Purgathofer, W.: Coherent hierarchical culling: Hardware occlusion queries made useful. Computer Graphics Forum 23, 615–624 (2004)CrossRefGoogle Scholar
  9. 9.
    Kovalčík, V., Sochor, J.: Occlusion culling with statistically optimized occlusion queries. In: WSCG (Short Papers), pp. 109–112 (2005)Google Scholar
  10. 10.
    Funkhouser, T.A., Séquin, C.H., Teller, S.J.: Management of large amounts of data in interactive building walkthroughs. In: SI3D 1992: Proceedings of the 1992 Symposium on Interactive 3D Graphics, pp. 11–20. ACM (1992)Google Scholar
  11. 11.
    Baxter III, W.V., Sud, A., Govindaraju, N.K., Manocha, D.: Gigawalk: interactive walkthrough of complex environments. In: EGRW 2002: Proceedings of the 13th Eurographics workshop on Rendering, pp. 203–214. Eurographics Association (2002)Google Scholar
  12. 12.
    Guthe, M., Balázs, Á., Klein, R.: Near optimal hierarchical culling: Performance driven use of hardware occlusion queries. In: Eurographics Symposium on Rendering 2006, The Eurographics Association (2006)Google Scholar
  13. 13.
    Brüderlin, B., Heyer, M., Pfützner, S.: Interviews3d: A platform for interactive handling of massive data sets. IEEE Computer Graphics and Applications 27, 48–59 (2007)CrossRefGoogle Scholar
  14. 14.
    Staadt, O.G., Walker, J., Nuber, C., Hamann, B.: A survey and performance analysis of software platforms for interactive cluster-based multi-screen rendering. In: Proceedings of the Workshop on Virtual Environments, EGVE 2003, pp. 261–270. ACM (2003)Google Scholar
  15. 15.
    Yuan, P., Green, M., Lau, R.W.H.: A framework for performance evaluation of real-time rendering algorithms in virtual reality. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology, VRST 1997, pp. 51–58. ACM (1997)Google Scholar
  16. 16.
    Plantinga, H., Dyer, C.R.: Visibility, occlusion, and the aspect graph. International Journal of Computer Vision 5, 137–160 (1990)CrossRefGoogle Scholar
  17. 17.
    Cook, R.L.: Stochastic sampling in computer graphics. ACM Trans. Graph. 5, 51–72 (1986)CrossRefGoogle Scholar
  18. 18.
    Hintze, J.L., Nelson, R.D.: Violin plots: A box plot-density trace synergism. The American Statistician 52, 181–184 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Claudius Jähn
    • 1
  • Benjamin Eikel
    • 1
  • Matthias Fischer
    • 1
  • Ralf Petring
    • 1
  • Friedhelm Meyer auf der Heide
    • 1
  1. 1.Heinz Nixdorf InstituteUniversity of PaderbornGermany

Personalised recommendations